|
|
Photoinduced Floquet higher-order Weyl semimetal in C6 symmetric Dirac semimetals |
Xin-Xin Xu(许欣欣)1, Zi-Ming Wang(王梓名)2, Dong-Hui Xu(许东辉)2,3,†, and Chui-Zhen Chen(陈垂针)1,‡ |
1 Institute for Advanced Study and School of Physical Science and Technology, Soochow University, Suzhou 215006, China; 2 Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, China; 3 Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, China |
|
|
Abstract Topological Dirac semimetals are a parent state from which other exotic topological phases of matter, such as Weyl semimetals and topological insulators, can emerge. In this study, we investigate a Dirac semimetal possessing sixfold rotational symmetry and hosting higher-order topological hinge Fermi arc states, which is irradiated by circularly polarized light. Our findings reveal that circularly polarized light splits each Dirac node into a pair of Weyl nodes due to the breaking of time-reversal symmetry, resulting in the realization of the Weyl semimetal phase. This Weyl semimetal phase exhibits rich boundary states, including two-dimensional surface Fermi arc states and hinge Fermi arc states confined to six hinges. Furthermore, by adjusting the incident direction of the circularly polarized light, we can control the degree of tilt of the resulting Weyl cones, enabling the realization of different types of Weyl semimetals.
|
Received: 03 April 2024
Revised: 29 April 2024
Accepted manuscript online: 02 May 2024
|
PACS:
|
78.40.Kc
|
(Metals, semimetals, and alloys)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403700), the National Natural Science Foundation of China (Grant Nos. 12074108 and 12347101), the Chongqing Natural Science Foundation (Grant No. CSTB2022NSCQ-MSX0568), the Fundamental Research Funds for the Central Universities (Grant No. 2023CDJXY048), the Natural Science Foundation of Jiangsu Province (Grant No. BK20230066), and the Jiangsu Shuang Chuang Project (Grant No. JSSCTD202209). |
Corresponding Authors:
Dong-Hui Xu, Chui-Zhen Chen
E-mail: donghuixu@cqu.edu.cn;czchen@suda.edu.cn
|
Cite this article:
Xin-Xin Xu(许欣欣), Zi-Ming Wang(王梓名), Dong-Hui Xu(许东辉), and Chui-Zhen Chen(陈垂针) Photoinduced Floquet higher-order Weyl semimetal in C6 symmetric Dirac semimetals 2024 Chin. Phys. B 33 067801
|
[1] Burkov A 2016 Nat. Mater. 15 1145 [2] Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126 [3] Yang B J and Nagaosa N 2014 Nat. Commun. 5 4898 [4] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 [5] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320 [6] Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 12542 [7] Kargarian M, Randeria M and Lu Y M 2016 Proc. Natl. Acad. Sci. USA 113 8648 [8] Wieder B J, Bradlyn B, Cano J, Wang Z, Vergniory M G, Elcoro L, Soluyanov A A, Felser C, Neupert T and Regnault N 2022 Nat. Rev. Mater. 7 196 [9] Le C, Wu X, Qin S, Li Y, Thomale R, Zhang F C and Hu J 2018 Proc. Natl. Acad. Sci. USA 115 8311 [10] Lin M and Hughes T L 2018 Phys. Rev. B 98 241103(R) [11] Wieder B J, Wang Z, Cano J, Dai X, Schoop L M, Bradlyn B and Bernevig B A 2020 Nat. Commun. 11 1 [12] Fang Y and Cano J 2021 Phys. Rev. B 104 245101 [13] Tyner A C, Sur S, Zhou Q, Puggioni D, Darancet P, Rondinelli J M and Goswami P 2021 arXiv:2102.06207v2 [14] Nie S, Chen J, Yue C, Le C, Yuan D, Wang Z, Zhang W and Weng H 2022 Science Bulletin 67 1958 [15] Zeng X T, Chen Z, Chen C, Liu B B, Sheng X L and Yang S A 2023 Front. Phys 18 13308 [16] Eckardt A 2017 Rev. Mod. Phys. 89 011004 [17] de la Torre A, Kennes D M, Claassen M, Gerber S, McIver J W and Sentef M A 2021 Rev. Mod. Phys. 93 041002 [18] Weitenberg C and Simonet J 2021 Nat. Phys. 17 1342 [19] Cayssol J, Dóra B, Simon F and Moessner R 2013 Phys. Status Solidi RRL 7 101 [20] Oka T and Kitamura S 2019 Annu. Rev. Condens. Matter Phys. 10 387 [21] Harper F, Roy R, Rudner M S and Sondhi S 2020 Annu. Rev. Condens. Matter Phys. 11 345 [22] Rudner M S and Lindner N H 2020 Nat. Rev. Phys. 2 229 [23] Bao C, Tang P, Sun D and Zhou S 2022 Nat. Rev. Phys. 4 33 [24] Oka T and Aoki H 2009 Phys. Rev. B 79 081406 [25] Inoue J i and Tanaka A 2010 Phys. Rev. Lett. 105 017401 [26] Kitagawa T, Berg E, Rudner M and Demler E 2010 Phys. Rev. B 82 235114 [27] Gu Z, Fertig H A, Arovas D P and Auerbach A 2011 Phys. Rev. Lett. 107 216601 [28] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108 [29] Delplace P, Gómez-León A and Platero G 2013 Phys. Rev. B 88 245422 [30] Foa Torres L E F, Perez-Piskunow P M, Balseiro C A and Usaj G 2014 Phys. Rev. Lett. 113 266801 [31] Usaj G, Perez-Piskunow P M, Foa Torres L E F and Balseiro C A 2014 Phys. Rev. B 90 115423 [32] Lindner N H, Refael G and Galitski V 2011 Nat. Phys. 7 490 [33] Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429 [34] Lindner N H, Bergman D L, Refael G and Galitski V 2013 Phys. Rev. B 87 235131 [35] Jiang L, Kitagawa T, Alicea J, Akhmerov A R, Pekker D, Refael G, Cirac J I, Demler E, Lukin M D and Zoller P 2011 Phys. Rev. Lett. 106 220402 [36] Rudner M S, Lindner N H, Berg E and Levin M 2013 Phys. Rev. X 3 031005 [37] Ezawa M 2013 Phys. Rev. Lett. 110 026603 [38] Gómez-León A and Platero G 2013 Phys. Rev. Lett. 110 200403 [39] Grushin A G, Gómez-León A and Neupert T 2014 Phys. Rev. Lett. 112 156801 [40] Wang R, Wang B, Shen R, Sheng L and Xing D Y 2014 Europhys. Lett. 105 17004 [41] Narayan A 2016 Phys. Rev. B 94 041409 [42] Yan Z and Wang Z 2016 Phys. Rev. Lett. 117 087402 [43] Taguchi K, Xu D H, Yamakage A and Law K T 2016 Phys. Rev. B 94 155206 [44] González J and Molina R A 2016 Phys. Rev. Lett. 116 156803 [45] Narayan A 2015 Phys. Rev. B 91 205445 [46] Saha K 2016 Phys. Rev. B 94 081103 [47] Chan C K, Oh Y T, Han J H and Lee P A 2016 Phys. Rev. B 94 121106 [48] Yan Z and Wang Z 2017 Phys. Rev. B 96 041206 [49] Zou J Y and Liu B G 2016 Phys. Rev. B 93 205435 [50] Hübener H, Sentef M A, De Giovannini U, Kemper A F and Rubio A 2017 Nat. Commun. 8 1 [51] Chen R, Zhou B and Xu D H 2018 Phys. Rev. B 97 155152 [52] Zhang D, Wang H, Ruan J, Yao G and Zhang H 2018 Phys. Rev. B 97 195139 [53] Firoz Islam S and Zyuzin A A 2019 Phys. Rev. B 100 165302 [54] Deng T, Zheng B, Zhan F, Fan J, Wu X and Wang R 2020 Phys. Rev. B 102 201105 [55] Ghosh A K, Nag T and Saha A 2022 Phys. Rev. B 105 115418 [56] Nag T and Roy B 2021 Commun. Phys. 4 1 [57] Nag T, Slager R J, Higuchi T and Oka T 2019 Phys. Rev. B 100 134301 [58] Du X L, Chen R, Wang R and Xu D H 2022 Phys. Rev. B 105 L081102 [59] Trevisan T V, Arribi P V, Heinonen O, Slager R J and Orth P P 2022 Phys. Rev. Lett. 128 066602 [60] Bomantara R W, Zhou L, Pan J and Gong J 2019 Phys. Rev. B 99 045441 [61] Rodriguez-Vega M, Kumar A and Seradjeh B 2019 Phys. Rev. B 100 085138 [62] Nag T, Juričić V and Roy B 2019 Phys. Rev. Research 1 032045 [63] Seshadri R, Dutta A and Sen D 2019 Phys. Rev. B 100 115403 [64] Peng Y and Refael G 2019 Phys. Rev. Lett. 123 016806 [65] Hu H, Huang B, Zhao E and Liu W V 2020 Phys. Rev. Lett. 124 057001 [66] Ghosh A K, Paul G C and Saha A 2020 Phys. Rev. B 101 235403 [67] Peng Y 2020 Phys. Rev. Research 2 013124 [68] Bomantara R W 2020 Phys. Rev. Research 2 033495 [69] Huang B and Liu W V 2020 Phys. Rev. Lett. 124 216601 [70] Zhu W, Chong Y D and Gong J 2021 Phys. Rev. B 103 L041402 [71] Zhang R X and Yang Z C 2021 Phys. Rev. B 103 L121115 [72] Nag T, Jurivćić V and Roy B 2021 Phys. Rev. B 103 115308 [73] Zhu W, Chong Y D and Gong J 2021 Phys. Rev. B 104 L020302 [74] Zhu W, Umer M and Gong J 2021 Phys. Rev. Research 3 L032026 [75] Rui W B, Zhang S B, Hirschmann M M, Zheng Z, Schnyder A P, Trauzettel B and Wang Z D 2021 Phys. Rev. B 103 184510 [76] Wang B Q, Wu H and An J H 2021 Phys. Rev. B 104 205117 [77] Ghosh S, Saha K and Sengupta K 2022 Phys. Rev. B 105 224312 [78] Wang Z M, Wang R, Sun J H, Chen T Y and Xu D H 2023 Phys. Rev. B 107 L121407 [79] Hu K, Qin Y, Cheng L, Shi Y and Qi J 2023 Chin. Phys. Lett. 40 114202 [80] Gao L L and Huang X G 2022 Chin. Phys. Lett. 39 021101 [81] Zheng Y, Chen W, Wan X and Xing D 2023 Chin. Phys. Lett. 40 097301 [82] McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G and Cavalleri A 2020 Nat. Phys. 16 38 [83] Liu Z, Zhou B, Zhang Y, Wang Z, Weng H, Prabhakaran D, Mo S K, Shen Z, Fang Z, Dai X, et al. 2014 Science 343 864 [84] Roy B 2019 Phys. Rev. Res. 1 032048 [85] Wang H X, Lin Z K, Jiang B, Guo G Y and Jiang J H 2020 Phys. Rev. Lett. 125 146401 [86] Ghorashi S A A, Li T and Hughes T L 2020 Phys. Rev. Lett. 125 266804 [87] Bukov M, D’Alessio L and Polkovnikov A 2015 Adv. Phys. 64 139 [88] Eckardt A and Anisimovas E 2015 New J. Phys. 17 093039 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|