Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017503    DOI: 10.1088/1674-1056/ad053b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Controllable high Curie temperature through 5d transition metal atom doping in CrI3

Xuebing Peng(彭雪兵)1, Mingsu Si(司明苏)2, and Daqiang Gao(高大强)1,†
1 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
2 School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
Abstract  Two-dimensional (2D) CrI3 is a ferromagnetic semiconductor with potential for applications in spintronics. However, its low Curie temperature (Tc) hinders realistic applications of CrI3. Based on first-principles calculations, 5d transition metal (TM) atom doping of CrI3 (TM@CrI3) is a universally effective way to increase Tc, which stems from the increased magnetic moment induced by doping with TM atoms. Tc of W@CrI3 reaches 254 K, nearly six times higher than that of the host CrI3. When the doping concentration of W atoms is increased to above 5.9%, W@CrI3 shows room-temperature ferromagnetism. Intriguingly, the large magnetic anisotropy energy of W@CrI3 can stabilize the long-range ferromagnetic order. Moreover, TM@CrI3 has a strong ferromagnetic stability. All TM@CrI3 change from a semiconductor to a half-metal, except doping with Au atom. These results provide information relevant to potential applications of CrI3 monolayers in spintronics.
Keywords:  ferromagnetism      magnetic anisotropy energy      Curie temperature      half-metal  
Received:  04 July 2023      Revised:  26 September 2023      Accepted manuscript online:  20 October 2023
PACS:  75.50.Pp (Magnetic semiconductors)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Corresponding Authors:  Daqiang Gao     E-mail:  gaodq@lzu.edu.cn

Cite this article: 

Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强) Controllable high Curie temperature through 5d transition metal atom doping in CrI3 2024 Chin. Phys. B 33 017503

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y S, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[3] Lee H, Son Y W, Park N, Han S W and Yu J J 2005 Phys. Rev. B 72 174431
[4] Schmidt M J and Loss D 2010 Phys. Rev. B 82 085422
[5] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[6] Kan E J, Li Z Y, Yang J L and Hou J G 2008 J. Am. Chem. Soc. 130 4224
[7] Huang B, Clark G, Efrén N M, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, Mcguire M A and Cobden D H 2017 Nature 546 270
[8] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z and Wang Y 2017 Nature 546 265
[9] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W and Zhu J Y 2018 Nature 563 94
[10] Dillon J F and Olson C E 1965 J. Appl. Phys. 36 1259
[11] Seyler K L, Zhong D, Huang B V, Linpeng X Y, Wilson N P, Taniguchi T K, Watanabe K J, Yao W, Xiao D and Mcguire M A 2018 Nano Lett. 18 3823
[12] Ge M, Su Y, Wang H, Yang G H and Zhang J F 2019 RSC Adv. 9 14766
[13] Jiang P H, Li L, Liao Z L, Zhao Y X and Zhong Z C 2018 Nano Lett. 18 3844
[14] Sun Z Y, Yi Y, Song T, Clark G, Huang B V, Shan Y W, Wu S, Huang D, Gao C L, Chen Z H, Mcguire M, Cao T, Xiao D, Liu W T, Yao W, Xu X D and Wu S W 2019 Nature 572 497
[15] Behera A K, Chowdhury S and Das S R 2019 Appl. Phys. Lett. 114 232402
[16] Lee I, Utermohlen F G, Weber D, Hwang K, Zhang C, Van Tol J, Goldberger J E, Trivedi N and Hammel P C 2020 Phys. Rev. Lett. 124 017201
[17] Sivadas N, Okamoto S, Xu X D, Fennie C J and Xiao D 2018 Nano Lett. 18 7658
[18] Huang B, Clark G, Efrén N O, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, Mcguire M A and Cobden D H 2017 Nature 546 270
[19] Zhu S Z and Li T 2016 Phys. Rev. B 93 115401
[20] Webster L and Yan J A 2018 Phys. Rev. B 98 144411
[21] Wang R, Su Y, Yang G H, Zhang J F and Zhang S B 2020 Chem. Mater. 32 1545
[22] Zhang J H, Guo Y, Li P G, Wang J, Zhou S, Zhao J J, Guo D and Zhong D H 2021 J. Phys. Chem. Lett. 12 2199
[23] Pizzochero M 2020 J. Phys. D Appl. Phys. 53 244003
[24] Jiang S W, Li L Z, Wang Z F, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549
[25] Meng Q Y, Lu Q, Cui W B, Xu T T and Zhang L L 2022 J. Phys. D Appl. Phys. 55 265303
[26] Wang H B, Fan F R, Zhu S S and Wu H 2016 Europhys. Lett. 114 47001
[27] Gao Y, Wang J, Li Z P, Yang J J, Xia M R, Hao X F, Xu Y H and Gao F M 2019 Phys. Status Solidi. Rapid Res. Lett. 13 1800410
[28] Guo Y, Yuan S J, Wang B, Shi L and Wang J L 2018 J. Mater. Chem. C 6 5716
[29] Yang Q, Hu X H, Shen X D, Krasheninnikov A V, Chen Z and Sun L 2021 ACS Appl. Mater. Inter. 13 21593
[30] Chen X, Shao Y T, Chen R, Susarla S, Hogan T, He Y, Zhang H, Wang S, Yao J, Ercius P, Muller D A, Ramesh R and Birgeneau R J 2022 Phys. Rev. Lett. 128 217203
[31] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[33] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Liu L, Ren X, Xie J, Cheng B, Liu W K, An T Y, Qin H W and Hu J F 2019 Appl. Surf. Sci 480 300
[36] Li T X, Jiang S W, Sivadas N K, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F and Shan J 2019 Nat. Mater. 18 1303
[37] Togo A and Tanaka I 2015 Scripta Mater. 108 1
[38] Stefano B R, Stefano D G, Andrea D C and Paolo G N 2001 Rev. Mod. Phys. 73 515
[39] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol. 14 408
[40] Li X X and Yang J L 2017 WIREs Comput. Mol. Sci. 7 e1314
[41] Liu Z H, Zhang S K, Wang X, Ye X B, Qin S J, Shen X O, Lu D B, Dai J H, Cao Y Y, Chen K, Radu F, Wu W B, Chen C T, Francoual S, Mardegan J R L, Leupold O, Tjeng L H, Hu Z W, Yang Y F and Long Y W 2022 Adv. Mater. 34 2200626
[1] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[2] Angular and planar transport properties of antiferromagnetic V5S8
Xiao-Kai Wu(吴晓凯), Bin Wang(王彬), De-Tong Wu(吴德桐), Bo-Wen Chen(陈博文), Meng-Juan Mi(弭孟娟), Yi-Lin Wang(王以林), and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(2): 027503.
[3] Electronic property and topological phase transition in a graphene/CoBr2 heterostructure
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(2): 027901.
[4] A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(5): 057504.
[5] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[6] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[9] Spontaneous isospin polarization and quantum Hall ferromagnetism in a rhombohedral trilayer graphene superlattice
Xiangyan Han(韩香岩), Qianling Liu(刘倩伶), Ruirui Niu(牛锐锐), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Chunrui Han(韩春蕊), Kenji Watanabe, Takashi Taniguchi, Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(11): 117201.
[10] Enhanced ferromagnetism and conductivity of ultrathin freestanding La0.7Sr0.3MnO3 membranes
Siqi Shan(单思齐), Yequan Chen(陈业全), Yongda Chen(陈勇达), Wenzhuo Zhuang(庄文卓), Ruxin Liu(刘汝新), Xu Zhang(张旭), Rong Zhang(张荣), and Xuefeng Wang(王学锋). Chin. Phys. B, 2023, 32(10): 107402.
[11] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[12] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[13] High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice
Xin-Ke Liu(刘鑫柯), Xin-Yang Li(李欣阳), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127203.
[14] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[15] Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications
Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(4): 047105.
No Suggested Reading articles found!