Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 068102    DOI: 10.1088/1674-1056/ad2a6d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synthesis and nitrogen content regulation of diamond in a high-pressure hydrogen-rich environment

Guofeng Huang(黄国锋)1, Liangchao Chen(陈良超)2,†, and Chao Fang(房超)2,‡
1 Inner Mongolia Key Laboratory of High-pressure Phase Functional Materials, Chifeng University, Chifeng 024000, China;
2 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  The regulating nitrogen content of diamond in a hydrogen-rich high-temperature and high-pressure (HPHT) growth environment was systematically investigated in this work by developing three growth systems, namely, "FeNi$+$Ti", "FeNi$+$C$_{3}$N$_{6}$H$_{6}$", and "FeNi$+$Ti$+$C$_{3}$N$_{6}$H$_{6}$". Optical microscopy, infrared spectroscopy, and photoluminescence (PL) spectroscopy measurements were conducted to analyze the spectroscopic characteristics of diamonds grown in these three systems. From our analysis, it was demonstrated that the presence of hydrogen in the sp$^{3}$ hybrid C-H does not directly affect the color of the diamond and facilitates the increase of the nitrogen-vacancy (NV) center concentration in a high-nitrogen-content diamond. In addition, titanium plays an important role in nitrogen removal, while its impact on hydrogen doping within the diamond lattice is insignificant. Most importantly, by regulating the ratio of nitrogen impurities that coexist in the nitrogen and hydrogen HPHT environment, the production of hydrogenous IIa-type diamond, hydrogenous Ib-type diamond, and hydrogenous high-nitrogen-type diamonds was achieved with a nitrogen content of less than 1ppm to 1600ppm.
Keywords:  diamond      HPHT      superhard material      hydrogen-rich environment  
Received:  25 November 2023      Revised:  04 February 2024      Accepted manuscript online:  19 February 2024
PACS:  81.05.ug (Diamond)  
  81.05.uj (Diamond/nanocarbon composites)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: The project was supported by the National Natural Science Foundation of China (Grant Nos. 12274373 and 12004341), the Open Project of Inner Mongolia Key Laboratory of High-pressure Phase Functional Materials, Chifeng University (Grant No. cfxygy202301), the Science and Technology Project of Xilinguole Province (Grant No. 202209), and the Natural Science Foundation of Henan Province (Grant No. 242300421155).
Corresponding Authors:  Liangchao Chen, Chao Fang     E-mail:  chenlc@zzu.edu.cn;fangchao1989@zzu.edu.cn

Cite this article: 

Guofeng Huang(黄国锋), Liangchao Chen(陈良超), and Chao Fang(房超) Synthesis and nitrogen content regulation of diamond in a high-pressure hydrogen-rich environment 2024 Chin. Phys. B 33 068102

[1] Zhou G T, Mu Y H, Song Y W, Zhang Z F, Zhang Y W, Shen W X, Wang Q Q, Wan B, Fang C, Chen L C, Li Y D and Jia X P 2022 Chin. Phys. B 31 068103
[2] Dang C, Chou J P, Dai B, Chou C T, Yang Y, Fan R, Lin W, Meng F, Hu A, Zhu J, Han J, Minor A M, Li J and Lu Y 2021 Science 371 76
[3] Li Y, Chen X Z, Ran M W, She Y C, Xiao Z G, Hu M H, Wang Y and An J 2022 Chin. Phys. B 31 046107
[4] Liu C, Song X Q, Li Q, Ma Y M and Chen C F 2020 Phys. Rev. Lett. 124 147001
[5] Yue Y H, Gao Y F, Hu W T, Xu B, Wang J, Zhang X J, Zhang Q, Wang Y B, Ge B H, Yang Z Y, Li Z H, Ying P, Liu X X, Yu D L, Wei B, Wang Z C, Zhou X F, Guo L and Tian Y J 2020 Nature 582 370
[6] Nie A M, Bu Y Q, Li P H, Zhang Y Z, Jin T Y, Liu J B, Su Z, Wang Y B, He J L, Liu Z Y, Wang H T, Tian Y J and Yang W 2019 Nat. Commun. 10 1
[7] Banerjee A, Bernoulli D, Zhang H T, Yuen M F, Liu J B, Dong J C, Ding F, Lu J, Dao M, Zhang W J, Lu Y and Suresh S 2018 Science 360 300
[8] Gu J, Huang K, Fang K, Wang X, Li Z and Si Z 2016 J. Cryst. Growth 451 165
[9] Liu Y, Wang Z W, Li B W, Zhao H Y, Wang S X, Chen L C, Ma H A and Jia X P 2023 Chin. Phys. B 32 128102
[10] Isberg J, Hammersberg J, Johansson E, Wikstroöm T, Twitchen D J, Whitehead A J, Coe S E and Scarsbrook G A 2002 Science 297 1670
[11] Yamada H, Chayahara A, Mokuno Y, Tsubouchi N, Shikata S and Fujimori N 2011 Diam. Relat. Mat. 20 616
[12] Zhang Q, Li H D, Cheng S H, Wang Q L, Li L A, Lv X Y and Zou G T 2011 Diam. Relat. Mat. 20 496
[13] Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y and Tian Y J 2014 Nature 510 250
[14] Qiu K L, Hou J P, Chen S, Li X, Yue Y H, Xu B, Hu Q, Liu L M, Yang Z Y, Nie A M, Gao Y F, Jin T Y, Wang J, Li Y H, Wang Y B, Tian Y J and Guo L 2023 Nat. Mater. 22 1317
[15] Luo K, Liu B, Hu W T, Dong X, Wang Y B, Huang Q, Gao Y F, Sun L, Zhao Z S, Wu Y J, Zhang Y, Ma M D, Zhou X F, He J L, Yu D L, Liu Z Y, Xu B and Tian Y J 2022 Nature 607 486
[16] Tong K, Zhang X, Li Z H, et al. 2024 Nature 626 79
[17] Shang Y C, Liu Z D, Dong J J, et al. 2021 Nature 599 599
[18] Tang H, Yuan X H, Cheng Y, Fei H Z, Liu F Y, Liang T, Zeng Z D, Ishii T, Wang M S, Katsura T, Sheng H and Gou H Y 2021 Nature 599 605
[19] Kaiser W and Bond W L 1959 Phys. Rev. 115 857
[20] Briddon P R and Jones 1993 Physica B 185 179
[21] Popovici G and Prelas M A 1995 Diam. Relat. Mat. 12 1305
[22] Ekimov E A, Sidorov V A, Bauer E D, Mel’nik N N, Curro N J, Thompson J D and Stishov S M 2004 Nature 428 542
[23] Ashfold M N R, Goss J P, Green B L, May P W, Newton M E and Peaker C V 2020 Chem. Rev. 120 5745
[24] InyushkinA V, Taldenkov A N, Yelisseyev A P and Vins V G 2023 Diam. Relat. Mat. 139 110302
[25] Kawasegi N, Ozaki K, Morita N, Nishimura K and Sasaoka H 2014 Diam. Relat. Mat. 49 14
[26] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J and Hollenberg L C L 2013 Phys. Rep. 528 1
[27] Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C L and Prawer S 2014 Phys. Rev. Lett. 112 047601
[28] Dolde F, Doherty M W, Michl J, Jakobi I, Naydenov B, Pezzagna S, Meijer J, Neumann P, Jelezko F, Manson N B and Wrachtrup J 2014 Phys. Rev. Lett. 112 097603
[29] Tetienne J P, Rondin L, Spinicelli P, Chipaux M, Debuisschert T, Roch J F and Jacques V 2012 New J. Phys. 14 103033
[30] Sumiya H and Tamasaku K 2012 Jpn. J. Appl. Phys. 51 090102
[31] Sumiya H, Toda N and Satoh S 1997 Diam. Relat. Mat. 6 1841
[32] Mäki J M, Tuomisto F, Kelly C J, Fisher D and Martineau P M 2009 J. Phys. Condes. Matter 21 364216
[33] Zhang Y F, Zang C Y, Ma H A, Liang Z Z, Zhou L, Li S S and Jia X P 2008 Diam. Relat. Mat. 17 209
[34] Borzdov Y, Pal’yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A and Efremov A 2002 Diam. Relat. Mat. 11 1863
[35] Fang C, Jia X P, Chen N, Li Y D, Guo L S, Chen L C, Ma H A and Liu X B 2016 J. Cryst. Growth 436 34
[36] Fang C, Zhang Y W, Zhang Z F, Shan C X, Shen W X and Jia X P 2018 Crystengcomm 20 505
[37] Briddon P, Jones R and Lister G M S 1988 J. Phys. C Solid State Phys. 21 1027
[38] Mucha J A, Flamm D L and Ibbotson D E 1989 J. Appl. Phys. 65 3448
[39] Landstrass M I and Ravi K V 1989 Appl. Phys. Lett. 55 1391
[40] Li Y, Jia X P, Ma H A, Zhang J, Wang F B, Chen N and Feng Y G 2014 Crystengcomm 16 7547
[41] Boyd S R, Kiflawi I and Woods G S 1994 Philos. Mag. B 69 1149
[42] Kiflawi I, Mayer A E, Spear P M, VanWyk J A and Woods G S 1994 Philos. Mag. B 69 1141
[1] Diamond-based electron emission: Structure, properties and mechanisms
Liang-Xue Gu(顾梁雪), Kai Yang(杨凯), Yan Teng(滕妍), Wei-Kang Zhao(赵伟康), Geng-You Zhao(赵耕右), Kang-Kang Fan(凡康康), Bo Feng(冯博), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Kun Tang(汤琨), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2024, 33(9): 098102.
[2] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇),Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[3] Effect of surface modification on the radiation stability of diamond ohmic contacts
Lian-Xi Mu(牟恋希), Shang-Man Zhao(赵上熳), Peng Wang(王鹏), Xiao-Lu Yuan(原晓芦), Jin-Long Liu(刘金龙), Zhi-Fu Zhu(朱志甫), Liang-Xian Chen(陈良贤), Jun-Jun Wei(魏俊俊), Xiao-Ping Ou-Yang(欧阳晓平), and Cheng-Ming Li(李成明). Chin. Phys. B, 2024, 33(2): 026801.
[4] Preparing highly entangled states of nanodiamond rotation and NV center spin
Wen-Liang Li(李文亮) and Duan-Lu Zhou(周端陆). Chin. Phys. B, 2024, 33(2): 020305.
[5] Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms
Chao Zeng(曾超), Yue-Ran Shi(石悦然), Yi-Yi Mao(毛一屹), Fei-Fei Wu(武菲菲), Yan-Jun Xie(谢岩骏), Tao Yuan(苑涛), Han-Ning Dai(戴汉宁), and Yu-Ao Chen(陈宇翱). Chin. Phys. B, 2024, 33(1): 010303.
[6] Design and simulation of an accelerometer based on NV center spin—strain coupling
Lu-Min Ji(季鲁敏), Li-Ye Zhao(赵立业), and Yu-Hai Wang(王裕海). Chin. Phys. B, 2024, 33(1): 017301.
[7] Anti-Stokes/Stokes temperature calibration and its application in laser-heating diamond anvil cells
Minmin Zhao(赵旻旻), Binbin Wu(吴彬彬), Jingyi Liu(刘静仪), and Li Lei(雷力). Chin. Phys. B, 2023, 32(9): 090704.
[8] High performance trench diamond junction barrier Schottky diode with a sidewall-enhanced structure
Ying Zhu(朱盈), Wang Lin(林旺), Dong-Shuai Li(李东帅), Liu-An Li(李柳暗), Xian-Yi Lv(吕宪义), Qi-Liang Wang(王启亮), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2023, 32(8): 088101.
[9] Current sensor based on diamond nitrogen-vacancy color center
Zi-Yang Shi(史子阳), Wei Gao(高伟), Qi Wang(王启), Hao Guo(郭浩), Jun Tang(唐军), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Zong-Min Ma(马宗敏), and Jun Liu(刘俊). Chin. Phys. B, 2023, 32(7): 070704.
[10] Diamond/c-BN van der Waals heterostructure with modulated electronic structures
Su-Na Jia(贾素娜), Gao-Xian Li(李高贤), Nan Gao(高楠), Shao-Heng Cheng(成绍恒), and Hong-Dong Li(李红东). Chin. Phys. B, 2023, 32(7): 077301.
[11] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[12] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[13] Molecular dynamics study of thermal conductivities of cubic diamond, lonsdaleite, and nanotwinned diamond via machine-learned potential
Jia-Hao Xiong(熊佳豪), Zi-Jun Qi(戚梓俊), Kang Liang(梁康), Xiang Sun(孙祥), Zhan-Peng Sun(孙展鹏), Qi-Jun Wang(汪启军), Li-Wei Chen(陈黎玮), Gai Wu(吴改), and Wei Shen(沈威). Chin. Phys. B, 2023, 32(12): 128101.
[14] Diamond growth in a high temperature and high pressure Fe-Ni-C-Si system: Effect of synthesis pressure
Yang Liu(刘杨), Zhiwen Wang(王志文), Bowei Li(李博维), Hongyu Zhao(赵洪宇), Shengxue Wang(王胜学), Liangchao Chen(陈良超), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2023, 32(12): 128102.
[15] Effects of oxygen/nitrogen co-incorporation on regulation of growth and properties of boron-doped diamond films
Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(11): 118102.
No Suggested Reading articles found!