INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Synthesis and nitrogen content regulation of diamond in a high-pressure hydrogen-rich environment |
Guofeng Huang(黄国锋)1, Liangchao Chen(陈良超)2,†, and Chao Fang(房超)2,‡ |
1 Inner Mongolia Key Laboratory of High-pressure Phase Functional Materials, Chifeng University, Chifeng 024000, China; 2 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China |
|
|
Abstract The regulating nitrogen content of diamond in a hydrogen-rich high-temperature and high-pressure (HPHT) growth environment was systematically investigated in this work by developing three growth systems, namely, "FeNi$+$Ti", "FeNi$+$C$_{3}$N$_{6}$H$_{6}$", and "FeNi$+$Ti$+$C$_{3}$N$_{6}$H$_{6}$". Optical microscopy, infrared spectroscopy, and photoluminescence (PL) spectroscopy measurements were conducted to analyze the spectroscopic characteristics of diamonds grown in these three systems. From our analysis, it was demonstrated that the presence of hydrogen in the sp$^{3}$ hybrid C-H does not directly affect the color of the diamond and facilitates the increase of the nitrogen-vacancy (NV) center concentration in a high-nitrogen-content diamond. In addition, titanium plays an important role in nitrogen removal, while its impact on hydrogen doping within the diamond lattice is insignificant. Most importantly, by regulating the ratio of nitrogen impurities that coexist in the nitrogen and hydrogen HPHT environment, the production of hydrogenous IIa-type diamond, hydrogenous Ib-type diamond, and hydrogenous high-nitrogen-type diamonds was achieved with a nitrogen content of less than 1ppm to 1600ppm.
|
Received: 25 November 2023
Revised: 04 February 2024
Accepted manuscript online: 19 February 2024
|
PACS:
|
81.05.ug
|
(Diamond)
|
|
81.05.uj
|
(Diamond/nanocarbon composites)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
Fund: The project was supported by the National Natural Science Foundation of China (Grant Nos. 12274373 and 12004341), the Open Project of Inner Mongolia Key Laboratory of High-pressure Phase Functional Materials, Chifeng University (Grant No. cfxygy202301), the Science and Technology Project of Xilinguole Province (Grant No. 202209), and the Natural Science Foundation of Henan Province (Grant No. 242300421155). |
Corresponding Authors:
Liangchao Chen, Chao Fang
E-mail: chenlc@zzu.edu.cn;fangchao1989@zzu.edu.cn
|
Cite this article:
Guofeng Huang(黄国锋), Liangchao Chen(陈良超), and Chao Fang(房超) Synthesis and nitrogen content regulation of diamond in a high-pressure hydrogen-rich environment 2024 Chin. Phys. B 33 068102
|
[1] Zhou G T, Mu Y H, Song Y W, Zhang Z F, Zhang Y W, Shen W X, Wang Q Q, Wan B, Fang C, Chen L C, Li Y D and Jia X P 2022 Chin. Phys. B 31 068103 [2] Dang C, Chou J P, Dai B, Chou C T, Yang Y, Fan R, Lin W, Meng F, Hu A, Zhu J, Han J, Minor A M, Li J and Lu Y 2021 Science 371 76 [3] Li Y, Chen X Z, Ran M W, She Y C, Xiao Z G, Hu M H, Wang Y and An J 2022 Chin. Phys. B 31 046107 [4] Liu C, Song X Q, Li Q, Ma Y M and Chen C F 2020 Phys. Rev. Lett. 124 147001 [5] Yue Y H, Gao Y F, Hu W T, Xu B, Wang J, Zhang X J, Zhang Q, Wang Y B, Ge B H, Yang Z Y, Li Z H, Ying P, Liu X X, Yu D L, Wei B, Wang Z C, Zhou X F, Guo L and Tian Y J 2020 Nature 582 370 [6] Nie A M, Bu Y Q, Li P H, Zhang Y Z, Jin T Y, Liu J B, Su Z, Wang Y B, He J L, Liu Z Y, Wang H T, Tian Y J and Yang W 2019 Nat. Commun. 10 1 [7] Banerjee A, Bernoulli D, Zhang H T, Yuen M F, Liu J B, Dong J C, Ding F, Lu J, Dao M, Zhang W J, Lu Y and Suresh S 2018 Science 360 300 [8] Gu J, Huang K, Fang K, Wang X, Li Z and Si Z 2016 J. Cryst. Growth 451 165 [9] Liu Y, Wang Z W, Li B W, Zhao H Y, Wang S X, Chen L C, Ma H A and Jia X P 2023 Chin. Phys. B 32 128102 [10] Isberg J, Hammersberg J, Johansson E, Wikstroöm T, Twitchen D J, Whitehead A J, Coe S E and Scarsbrook G A 2002 Science 297 1670 [11] Yamada H, Chayahara A, Mokuno Y, Tsubouchi N, Shikata S and Fujimori N 2011 Diam. Relat. Mat. 20 616 [12] Zhang Q, Li H D, Cheng S H, Wang Q L, Li L A, Lv X Y and Zou G T 2011 Diam. Relat. Mat. 20 496 [13] Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y and Tian Y J 2014 Nature 510 250 [14] Qiu K L, Hou J P, Chen S, Li X, Yue Y H, Xu B, Hu Q, Liu L M, Yang Z Y, Nie A M, Gao Y F, Jin T Y, Wang J, Li Y H, Wang Y B, Tian Y J and Guo L 2023 Nat. Mater. 22 1317 [15] Luo K, Liu B, Hu W T, Dong X, Wang Y B, Huang Q, Gao Y F, Sun L, Zhao Z S, Wu Y J, Zhang Y, Ma M D, Zhou X F, He J L, Yu D L, Liu Z Y, Xu B and Tian Y J 2022 Nature 607 486 [16] Tong K, Zhang X, Li Z H, et al. 2024 Nature 626 79 [17] Shang Y C, Liu Z D, Dong J J, et al. 2021 Nature 599 599 [18] Tang H, Yuan X H, Cheng Y, Fei H Z, Liu F Y, Liang T, Zeng Z D, Ishii T, Wang M S, Katsura T, Sheng H and Gou H Y 2021 Nature 599 605 [19] Kaiser W and Bond W L 1959 Phys. Rev. 115 857 [20] Briddon P R and Jones 1993 Physica B 185 179 [21] Popovici G and Prelas M A 1995 Diam. Relat. Mat. 12 1305 [22] Ekimov E A, Sidorov V A, Bauer E D, Mel’nik N N, Curro N J, Thompson J D and Stishov S M 2004 Nature 428 542 [23] Ashfold M N R, Goss J P, Green B L, May P W, Newton M E and Peaker C V 2020 Chem. Rev. 120 5745 [24] InyushkinA V, Taldenkov A N, Yelisseyev A P and Vins V G 2023 Diam. Relat. Mat. 139 110302 [25] Kawasegi N, Ozaki K, Morita N, Nishimura K and Sasaoka H 2014 Diam. Relat. Mat. 49 14 [26] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J and Hollenberg L C L 2013 Phys. Rep. 528 1 [27] Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C L and Prawer S 2014 Phys. Rev. Lett. 112 047601 [28] Dolde F, Doherty M W, Michl J, Jakobi I, Naydenov B, Pezzagna S, Meijer J, Neumann P, Jelezko F, Manson N B and Wrachtrup J 2014 Phys. Rev. Lett. 112 097603 [29] Tetienne J P, Rondin L, Spinicelli P, Chipaux M, Debuisschert T, Roch J F and Jacques V 2012 New J. Phys. 14 103033 [30] Sumiya H and Tamasaku K 2012 Jpn. J. Appl. Phys. 51 090102 [31] Sumiya H, Toda N and Satoh S 1997 Diam. Relat. Mat. 6 1841 [32] Mäki J M, Tuomisto F, Kelly C J, Fisher D and Martineau P M 2009 J. Phys. Condes. Matter 21 364216 [33] Zhang Y F, Zang C Y, Ma H A, Liang Z Z, Zhou L, Li S S and Jia X P 2008 Diam. Relat. Mat. 17 209 [34] Borzdov Y, Pal’yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A and Efremov A 2002 Diam. Relat. Mat. 11 1863 [35] Fang C, Jia X P, Chen N, Li Y D, Guo L S, Chen L C, Ma H A and Liu X B 2016 J. Cryst. Growth 436 34 [36] Fang C, Zhang Y W, Zhang Z F, Shan C X, Shen W X and Jia X P 2018 Crystengcomm 20 505 [37] Briddon P, Jones R and Lister G M S 1988 J. Phys. C Solid State Phys. 21 1027 [38] Mucha J A, Flamm D L and Ibbotson D E 1989 J. Appl. Phys. 65 3448 [39] Landstrass M I and Ravi K V 1989 Appl. Phys. Lett. 55 1391 [40] Li Y, Jia X P, Ma H A, Zhang J, Wang F B, Chen N and Feng Y G 2014 Crystengcomm 16 7547 [41] Boyd S R, Kiflawi I and Woods G S 1994 Philos. Mag. B 69 1149 [42] Kiflawi I, Mayer A E, Spear P M, VanWyk J A and Woods G S 1994 Philos. Mag. B 69 1141 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|