Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 097403    DOI: 10.1088/1674-1056/acd328
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hole density dependent magnetic structure and anisotropy in Fe-pnictide superconductor

Yuan-Fang Yue(岳远放)1,2, Zhong-Bing Huang(黄忠兵)3,†, Huan Li(黎欢)1,2, Xing Ming(明 星)1,2, and Xiao-Jun Zheng(郑晓军)1,2,‡
1 College of Science, Guilin University of Technology, Guilin 541004, China;
2 Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004, China;
3 Faculty of Physics, Hubei University, Wuhan 430062, China
Abstract  The competition between different magnetic structures in hole-doped Fe-pnicitides is explored based on an extended five-orbital Hubbard model including long-range Coulomb interactions. Our results show that the stabilized magnetic structure evolves with increasing hole doping level. Namely, the stripe antiferromagnetic phase dominates at zero doping, while magnetic structures with more antiferromagnetic linking numbers such as the staggered tetramer, staggered trimer, and staggered dimer phases become energetically favorable as the hole density increases. At a certain doping level, energy degeneracy of different magnetic structures appears, indicating strong magnetic frustration and magnetic fluctuations in the system. We suggest that the magnetic competition induced by the hole doping may explain the fast decrease of the Neel temperature TN and the moderately suppressed magnetic moment in the hole doped Fe-pnicitides. Moreover, our results show a sign reversal of the kinetic energy anisotropy as the magnetic ground state evolves, which may be the mechanism behind the puzzling sign reversal of the in-plane resistivity anisotropy in hole-doped Fe-pnicitides.
Keywords:  iron-pnictide superconductors      magnetic structure      resistivity anisotropy  
Received:  27 March 2023      Revised:  26 April 2023      Accepted manuscript online:  06 May 2023
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.70.Xa (Pnictides and chalcogenides)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
Fund: Project supported by the Guangxi Natural Science Foundation, China (Grant Nos. 2022GXNSFAA035560 and GuikeAD20159009) and the Scientific Research Foundation of Guilin University of Technology (Grant No. GLUTQD2017009).
Corresponding Authors:  Zhong-Bing Huang, Xiao-Jun Zheng     E-mail:  huangzb@hubu.edu.cn;xjzheng@glut.edu.cn

Cite this article: 

Yuan-Fang Yue(岳远放), Zhong-Bing Huang(黄忠兵), Huan Li(黎欢),Xing Ming(明 星), and Xiao-Jun Zheng(郑晓军) Hole density dependent magnetic structure and anisotropy in Fe-pnictide superconductor 2023 Chin. Phys. B 32 097403

[1] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] Fradkin E, Kivelson S A and Tranquada J M 2015 Rev. Mod. Phys. 87 457
[3] Inosov D S 2016 Comptes Rendus Phys. 17 60
[4] Bascones E, Valenzuela B and Calderon M J 2016 Comptes Rendus Phys. 17 36
[5] Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X and Zeng G Q 2015 Chin. Phys. Lett. 32 107401
[6] Hong X C, Wang A F, Zhang Z, Pan J, He L P, Luo X G, Chen X H and Li S Y 2015 Chin. Phys. Lett. 32 127403
[7] Johnston D C 2010 Adv. Phys. 59 803
[8] Dai P C, Hu J P and Dagotto E 2012 Nat. Phys. 8 709
[9] Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R and Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878
[10] Jiang Q, Kang Y T and Yao D X 2013 Chin. Phys. B 22 087402
[11] Nakajima M, Liang T, Ishida S, Tomioka Y, Kihou K, Lee C H, Iyo A, Eisaki H, Kakeshita T, Ito T and Uchida S 2011 Proc. Natl. Acad. Sci. USA 108 12238
[12] Dusza A, Lucarelli A, Pfuner F, Chu J H, Fisher I R and Degiorg L 2011 Europhys. Lett. 93 37002
[13] Chu J H, Analytis J G, De Greve K, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 Science 329 824
[14] de'Medici L, Giovannetti G and Capone M 2014 Phys. Rev. Lett. 112 177001
[15] Hardy F, Burger P, Wolf T, Fisher R A, Schweiss P, Adelmann P, Heid R, Fromknecht R, Eder R, Ernst D, Lohneysen H and Meingast C 2010 Europhys. Lett. 91 47008
[16] Popovich P, Boris A V, Dolgov O V, Golubov A A, Sun D L, Lin C T, Kremer R K and Keimer B 2010 Phys. Rev. Lett. 105 027003
[17] Pramanik A K, Abdel-Hafiez M, Aswartham S, Wolter A U B, Wurmehl S, Kataev V and Büchner B 2011 Phys. Rev. B 84 064525
[18] Mu G, Luo H, Wang Z, Shan L, Ren C and Wen H H 2009 Phys. Rev. B 79 174501
[19] Kim J S, Kim E G, Stewart G R, Chen X H and Wang X F 2011 Phys. Rev. B 83 172502
[20] Abdel-Hafiez M, Aswartham S, Wurmehl S, Grinenko V, Hess C, Drechsler S L, Johnston S, Wolter A U B, Büchner B, Rosner H and Boeri L 2012 Phys. Rev. B 85 134533
[21] Degiorgi L 2011 New J. Phys. 13 023011
[22] Li G, Hu W Z, Dong J, Li Z, Zheng P, Chen G F, Luo J L and Wang N L 2008 Phys. Rev. Lett. 101 107004
[23] Yang J, Hüvonen D, Nagel U, Room T, Ni N, Canfield P C, Bud'ko S L, Carbotte J P and Timusk T 2009 Phys. Rev. Lett. 102 187003
[24] Wang N L, Hu W Z, Chen Z G, Yuan R H, Li G, Chen G F and Xiang T 2012 J. Phys.: Condens. Matter 24 294202
[25] Brouet V, Jensen M F, Nicolaou A, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Forget A and Colson D 2012 arXiv:1105.5604 [cond-mat.supr-con]
[26] Yi M, Lu D H, Analytis J G, Chu J H, Mo S K, He R H, Moore R G, Zhou X J, Chen G F, Luo J L, Wang N L, Hussain Z, Singh D J, Fisher I R and Shen Z X 2009 Phys. Rev. B 80 024515
[27] Ding H, Nakayama K, Richard P, Souma S, Sato T, Takahashi T, Neupane M, Xu Y M, Pan Z H, Fedorov A V, Wang Z, Dai X, Fang Z, Chen G F, Luo J L and Wang N L 2011 J. Phys.: Condens. Matter 23 135701
[28] Yoshida T, Ideta S, Nishi I, Fujimori A, Yi M, Moore R G, Mo S K, Lu D H, Shen Z X, Hussain Z, Kihou K, Shirage P M, Kito H, Lee C H, Iyo A, Eisaki H and Harima H 2014 Front. Phys. 200017
[29] Terashima T, Kimata M, Kurita N, Satsukawa H, Harada A, Hazama K, Imai M, Sato A, Kihou K, Lee C H, Kito H, Eisaki H, Iyo A, Saito T, Fukazawa H, Kohori Y, Harima H and Uji S 2010 J. Phys. Soc. Jpn. 79 053702
[30] Mallett B P P, Wang C N, Marsik P, Sheveleva E, Yazdi-Rizi M, Tallon J L, Adelmann P, Wolf T and Bernhard C 2017 Phys. Rev. B 95 054512
[31] Blomberg E C, Tanatar M A, Fernandes R M, Mazin I I, Shen B, Wen H H, Johannes M D, Schmalian J and Prozorov R 2013 Nat. Commun. 4 1914
[32] Ma J Q, Luo X G, Cheng P, Zhu N, Liu D Y, Chen F, Ying J J, Wang A F, Lu X F, Lei B and Chen X H 2014 Phys. Rev. B 89 174512
[33] Liang S, Moreo A and Dagotto E 2013 Phys. Rev. Lett. 111 47004
[34] Fernandes R M, Chubukov A and Schmalian J 2014 Nat. Phys. 10 97
[35] Christensen M H, Kang J, Andersen B M and Fernandes R M 2016 Phys. Rev. B 93 085136
[36] Fernandes R M, Abrahams E and Schmalian J 2011 Phys. Rev. Lett. 107 217002
[37] Zheng X J, Huang Z B, Liu D Y and Zou L J 2015 Phys. Rev. B 92 085109
[38] Zheng X J, Huang Z B and Zou L J 2015 Chin. Phys. B 24 017404
[39] Jiang K, Hu J P, Ding H and Wang Z Q 2016 Phys. Rev. B 93 115138
[40] Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M and Valent R 2015 Nat. Phys. 11 953
[41] Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H and Aoki H 2008 Phys. Rev. Lett. 101 087004
[42] Brydon P M R, Daghofer M and Timm C 2011 J. Phys.: Condens. Matter 23 246001
[43] Miyake T, Nakamura K, Arita R and Imada M 2010 J. Phys. Soc. Jpn. 79 044705
[44] Belozerov A S, Korotin M A, Anisimov V I and Poteryaev A I 2012 Phys. Rev. B 85 045109
[45] Zheng X J, Huang Z B, Li H, Yang F and Lin H Q 2019 J. Phys.: Condens. Matter 31 055601
[1] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[2] Physical properties and magnetic structure of a layered antiferromagnet PrPd0.82Bi2
Meng Yang(杨萌), Changjiang Yi(伊长江), Fengfeng Zhu(朱锋锋), Xiao Wang(王霄), Dayu Yan(闫大禹), Shanshan Miao(苗杉杉), Yixi Su(苏夷希), Youguo Shi(石友国). Chin. Phys. B, 2020, 29(6): 067502.
[3] A single-crystal neutron diffraction study on magnetic structure of CsCo2Se2
Juanjuan Liu(刘娟娟), Jieming Sheng(盛洁明), Wei Luo(罗伟), Jinchen Wang(汪晋辰), Wei Bao(鲍威), Jinhu Yang(杨金虎), Minghu Fang(方明虎), S A Danilkin. Chin. Phys. B, 2018, 27(11): 117401.
[4] Mn-based permanent magnets
Jinbo Yang(杨金波), Wenyun Yang(杨文云), Zhuyin Shao(邵珠印), Dong Liang(梁栋), Hui Zhao(赵辉), Yuanhua Xia(夏元华), Yunbo Yang(杨云波). Chin. Phys. B, 2018, 27(11): 117503.
[5] The magnetic properties and magnetocaloric effects in binary R-T (R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds
Xin-Qi Zheng(郑新奇), Bao-Gen Shen(沈保根). Chin. Phys. B, 2017, 26(2): 027501.
[6] Evolution of structure and physical properties in Al-substituted Ba-hexaferrites
Alex Trukhanov, Larisa Panina, Sergei Trukhanov, Vitalii Turchenko, Mohamed Salem. Chin. Phys. B, 2016, 25(1): 016102.
[7] Variational Monte Carlo study of the nematic state in iron-pnictide superconductors with a five-orbital model
Zheng Xiao-Jun (郑晓军), Huang Zhong-Bing (黄忠兵), Zou Liang-Jian (邹良剑). Chin. Phys. B, 2015, 24(1): 017404.
[8] Study of electronic and magnetic properties of MnS layers
R. Masrour, E. K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi. Chin. Phys. B, 2012, 21(12): 127101.
[9] Neutron diffraction study on composite compound Nd2Co7
Yang Yu-Qi(杨育奇), Li Guan-Nan(李冠男), Wang Tong(王通), Huang Qing-Zhen(黄清镇), Gao Qing-Qing(高庆庆), Li Jing-Bo(李静波), Liu Guang-Yao(刘广耀), Luo Jun(骆军), and Rao Guang-Hui(饶光辉) . Chin. Phys. B, 2011, 20(10): 106101.
[10] Phase separation and abnormal transport behaviours in La0.7-xGdxSr0.3MnO3 system
Liu Ning (刘宁), Tong Wei (童伟), Zhang Yu-Heng (张裕恒). Chin. Phys. B, 2004, 13(6): 958-967.
[11] Magnetic properties and magnetic phase diagrams of intermetallic compound GdMn2Ge2
Guo Guang-Hua (郭光华), Zhang Hai-Bei (张海贝), R. Z. Levitin. Chin. Phys. B, 2003, 12(6): 655-660.
No Suggested Reading articles found!