Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 027901    DOI: 10.1088/1674-1056/ad0f8a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic property and topological phase transition in a graphene/CoBr2 heterostructure

Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文)
School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan 250022, China
Abstract  Recently, significant experimental advancements in achieving topological phases have been reported in van der Waals (vdW) heterostructures involving graphene. Here, using first-principles calculations, we investigate graphene/CoBr$_{2}$ (Gr/CoBr$_{2}$) heterostructures and find that an enhancement of in-plane magnetic anisotropy (IMA) energy in monolayer CoBr$_{2}$ can be accomplished by reducing the interlayer distance of the vdW heterostructures. In addition, we clarify that the enhancement of IMA energy primarily results from two factors: one is the weakness of the Co-d$_{xy}$ and Co-d$_{x^{2}-y^{2}}$ orbital hybridization and the other is the augmentation of the Co-d$_{yz}$ and Co-d$_{z^{2}}$ orbital hybridization. Meanwhile, calculation results suggest that the Kosterlitz-Thouless phase transition temperature ($T_{\rm KT}$) of a 2D $XY$ magnet Gr/CoBr$_{2}$ (23.8 K) is higher than that of a 2D $XY$ monolayer CoBr$_{2}$ (1.35 K). By decreasing the interlayer distances, the proximity effect is more pronounced and band splitting appears. Moreover, by taking into account spin-orbit coupling, a band gap of approximately 14.3 meV and the quantum anomalous Hall effect (QAHE) are attained by decreasing the interlayer distance by 1.0 Å. Inspired by the above conclusions, we design a topological field transistor device model. Our results support that the vdW interlayer distance can be used to modulate the IMA energy and QAHE of materials, providing a pathway for the development of new low-power spintronic devices.
Keywords:  van der Waals heterostructure      in-plane magnetic anisotropy energy      quantum anomalous Hall effect  
Received:  08 October 2023      Revised:  24 November 2023      Accepted manuscript online:  24 November 2023
PACS:  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  75.30.Gw (Magnetic anisotropy)  
  64.70.Tg (Quantum phase transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52173283), Taishan Scholar Program of Shandong Province (Grant No. ts20190939), and Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043).
Corresponding Authors:  Chang-Wen Zhang     E-mail:  ss_zhangchw@ujn.edu.cn

Cite this article: 

Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文) Electronic property and topological phase transition in a graphene/CoBr2 heterostructure 2024 Chin. Phys. B 33 027901

[1] Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H, Huang R, Kim J S, Li T, Li Y, Liechti K M, Lu N, Park H S, Reed E J, Wang P, Yakobson B I, Zhang T, Zhang Y W, Zhou Y and Zhu Y 2017 Extreme Mech. Lett. 13 42
[2] Miro P, Audiffred M and Heine T 2014 Chem. Soc. Rev. 43 6537
[3] Siahrostami S, Tsai C, Karamad M, Koitz R, Garcia-Melchor M, Bajdich M, Vojvodic A, Abild-Pedersen F, Norskov J K and Studt F 2016 Catal. Lett. 146 1917
[4] Han W, Kawakami R K, Gmitra M and Fabian J 2014 Nat. Nanotechnol. 9 794
[5] Ren Y, Qiao Z and Niu Q 2016 Rep. Prog. Phys. 79 066501
[6] Yang S A 2016 Spin 6 1640003
[7] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 ACS Appl. Nano Mater. 6 14003
[8] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
[9] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401
[10] Zollner K, Faria P E Jr and Fabian J 2019 Phys. Rev. B 100 085128
[11] Cardoso C, Soriano D, Garcia-Martinez N A and Fernandez-Rossier J 2018 Phys. Rev. Lett. 121 067701
[12] Hallal A, Ibrahim F, Yang H, Roche S and Chshiev M 2017 2D Materials 4 025074
[13] Khokhriakov D, Cummings A W, Song K, Vila M, Karpiak B, Dankert A, Roche S and Dash S P 2018 Sci. Adv. 4 eaat9349
[14] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A H and Niu Q 2014 Phys. Rev. Lett. 112 116404
[15] Zollner K, Gmitra M, Frank T and Fabian J 2016 Phys. Rev. B 94 155441
[16] Ci P, Chen Y, Kang J, Suzuki R, Choe H S, Suh J, Ko C, Park T, Shen K, Iwasa Y, Tongay S, Ager J W, III, Wang L W and Wu J 2017 Nano Lett. 17 4982
[17] Gong C, Kim E M, Wang Y, Lee G and Zhang X 2019 Nat. Commun. 10 2657
[18] Song T, Fei Z, Yankowitz M, Lin Z, Jiang Q, Hwangbo K, Zhang Q, Sun B, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J-H, Cobden D H, Dean C R, Xiao D and Xu X 2019 Nat. Mater. 18 1298
[19] Yao W, Wang E, Bao C, Zhang Y, Zhang K, Bao K, Chan C K, Chen C, Avila J, Asensio M C, Zhu J and Zhou S 2018 Proc. Natl. Acad. Sci. USA 115 6928
[20] Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I and Tartakovskii A I 2019 Nature 567 81
[21] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[22] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C 2013 Science 340 1427
[23] Han Y T, Ji W X, Wang P J, Li P and Zhang C W 2023 Nanoscale 15 6830
[24] Li S S, Ji W X, Hu S J, Zhang C W and Yan S S 2017 ACS Appl. Mater. Interfaces 9 41443
[25] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112
[26] Jin C, Kim J, Utama M I B, Regan E C, Kleemann H, Cai H, Shen Y, Shinner M J, Sengupta A, Watanabe K, Taniguchi T, Tongay S, Zettl A and Wang F 2018 Science 360 893
[27] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605
[28] Yu H, Liu G B, Tang J, Xu X and Yao W 2017 Sci. Adv. 3 e1701696
[29] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101
[30] Wu B, Song Y L, Ji W X, Wang P J, Zhang S F and Zhang C W 2023 Phys. Rev. B 107 214419
[31] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
[32] Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C and Fabian J 2009 Phys. Rev. B 80 235431
[33] Sichau J, Prada M, Anlauf T, Lyon T J, Bosnjak B, Tiemann L and Blick R H 2019 Phys. Rev. Lett. 122 046403
[34] Zhang J, Zhao B, Yao Y and Yang Z 2015 Phys. Rev. B 92 165418
[35] Qiao Z, Jiang H, Li X, Yao Y and Niu Q 2012 Phys. Rev. B 85 115439
[36] Han Y, Yan Z, Li Z, Xu X, Zhang Z, Niu Q and Qiao Z 2023 Phys. Rev. B 107 205412
[37] Su S, Barlas Y, Li J, Shi J and Lake R K 2017 Phys. Rev. B 95 075418
[38] Zhang H S, Ning Y H, Yang W J, Zhang J Y, Zhang R Q and Xu X H 2019 Phys. Chem. Chem. Phys. 21 17087
[39] Liu Z, Han Y, Ren Y, Niu Q and Qiao Z 2021 Phys. Rev. B 104 L121403
[40] Liu Z, Ren Y, Han Y, Niu Q and Qiao Z 2022 Phys. Rev. B 106 195303
[41] Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J and Niu Q 2010 Phys. Rev. B 82 161414
[42] Zanolli Z, Niu C, Bihlmayer G, Mokrousov Y, Mavropoulos P, Verstraete M J and Blügel S 2018 Phys. Rev. B 98 155404
[43] Cui Q, Liang J, Yang B, Wang Z, Li P, Cui P and Yang H 2020 Phys. Rev. B 101 214439
[44] Bedoya-Pinto A, Ji J R, Pandeya A K, Gargiani P, Valvidares M, Sessi P, Taylor J M, Radu F, Chang K and Parkin S S P 2021 Science 374 616
[45] Honjo H, Ikeda S, Sato H, Sato S, Watanabe T, Miura S, Nasuno T, Noguchi Y, Yasuhira M, Tanigawa T, Koike H, Muraguchi M, Niwa M, Ito K, Ohno H and Endoh T 2016 IEEE Trans. Magn. 52 1
[46] Kent A D 2010 Nat. Mater. 9 699
[47] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 Nanoscale 15 8395
[48] Chen P, Zou J Y and Liu B G 2017 Phys. Chem. Chem. Phys. 19 13432
[49] Lv H Y, Lu W J, Luo X, Zhu X B and Sun Y P 2019 Phys. Rev. B 99 134416
[50] Zhou Y, Lu H, Zu X and Gao F 2016 Sci. Rep. 6 19407
[51] Blochl 1994 Phys. Rev. B 50 17953
[52] Kresse and Furthmuller 1996 Phys. Rev. B 54 11169
[53] Kresse and Hafner 1993 Phys. Rev. B 47 558
[54] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[55] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[56] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[57] Jabar A, Masrour R, Kadim G, Hamedoun M, Hourmatallah A, Benzakour N, Rezzouk A, Bouslykhane K and Kharbach J 2021 Commun. Theor. Phys. 73 1663
[58] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309
[59] Wang X, Yates J R, Souza I and Vanderbilt D 2006 Phys. Rev. B 74 195118
[60] Wilkinson M K, Cable J W, Wollan E O and Koehler W C 1959 Phys. Rev. 113 497
[61] Gabrys P A, Seo S E, Wang M X, Oh E, Macfarlane R J and Mirkin C A 2018 Nano Lett. 18 579
[62] Horide T, Kametani F, Yoshioka S, Kitamura T and Matsumoto K 2017 ACS Nano 11 1780
[63] Jin M, Zhang H, Wang J, Zhong X, Lu N, Li Z, Xie Z, Kim M J and Xia Y 2012 ACS Nano 6 2566
[64] Langjahr P A, Lange F F, Wagner T and Rühle M 1998 Acta Mater. 46 773
[65] Liu J and Zhang J 2020 Chem. Rev. 120 2123
[66] Shelke V, Mazumdar D, Srinivasan G and Gupta A 2011 J. Appl. Phys. 109 07D914
[67] Calderon C E, Plata J J, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl M J, Hart G, Nardelli M B and Curtarolo S 2015 Comput. Mater. Sci. 108 233
[68] Tung J C and Guo G Y 2007 Phys. Rev. B 76 094413
[69] Yan S, Qiao W, Jin D, Xu X, Mi W and Wang D 2021 Phys. Rev. B 103 224432
[70] Chen W Z, Jiang L N, Yan Z R, Zhu Y, Wan C H and Han X F 2020 Phys. Rev. B 101 144434
[71] Wang D S, Wu R and Freeman A J 1993 Phys. Rev. B 47 14932
[72] Yang B S, Zhang J, Jiang L N, Chen W Z, Tang P, Zhang X G, Yan Y and Han X F 2017 Phys. Rev. B 95 174424
[73] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181
[74] Ren Y, Zeng J, Deng X, Yang F, Pan H and Qiao Z 2016 Phys. Rev. B 94 085411
[75] Ren Y, Qiao Z and Niu Q 2020 Phys. Rev. Lett. 124 166804
[76] Zhong P, Ren Y, Han Y, Zhang L and Qiao Z 2017 Phys. Rev. B 96 241103
[1] Improving the electrical performances of InSe transistors by interface engineering
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shijun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(4): 047302.
[2] InSe-Te van der Waals heterostructures for current rectification and photodetection
Hao Wang(王昊), Guo-Yu Xian(冼国裕), Li Liu(刘丽), Xuan-Ye Liu(刘轩冶), Hui Guo(郭辉), Li-Hong Bao(鲍丽宏), Hai-Tao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(8): 087303.
[3] Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study
Qianqian Wang(王倩倩), Jianzhou Zhao(赵建洲), Weikang Wu(吴维康), Yinning Zhou(周胤宁), Qile Li, Mark T. Edmonds, and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2023, 32(8): 087506.
[4] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Low-damage photolithography for magnetically doped (Bi,Sb)2Te3 quantum anomalous Hall thin films
Zhiting Gao(高志廷), Minghua Guo(郭明华), Zichen Lian(连梓臣), Yaoxin Li(李耀鑫), Yunhe Bai(白云鹤), Xiao Feng(冯硝), Ke He(何珂), Yayu Wang(王亚愚), Chang Liu(刘畅), and Jinsong Zhang(张金松). Chin. Phys. B, 2023, 32(11): 117303.
[7] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[8] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[9] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[10] Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures
Haixin Ma(马海鑫), Yanhui Xing(邢艳辉), Boyao Cui(崔博垚), Jun Han(韩军), Binghui Wang(王冰辉), and Zhongming Zeng(曾中明). Chin. Phys. B, 2022, 31(10): 108502.
[11] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[12] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[13] Observation of magnetoresistance in CrI3/graphene van der Waals heterostructures
Yu-Ting Niu(牛宇婷), Xiao Lu(鲁晓), Zhong-Tai Shi(石钟太), and Bo Peng(彭波). Chin. Phys. B, 2021, 30(11): 117506.
[14] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[15] Electrostatic gating of solid-ion-conductor on InSe flakes and InSe/h-BN heterostructures
Zhang Zhou(周璋), Liangmei Wu(吴良妹), Jiancui Chen(陈建翠), Jiajun Ma(马佳俊), Yuan Huang(黄元), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(11): 118501.
No Suggested Reading articles found!