Abstract Recently, significant experimental advancements in achieving topological phases have been reported in van der Waals (vdW) heterostructures involving graphene. Here, using first-principles calculations, we investigate graphene/CoBr (Gr/CoBr) heterostructures and find that an enhancement of in-plane magnetic anisotropy (IMA) energy in monolayer CoBr can be accomplished by reducing the interlayer distance of the vdW heterostructures. In addition, we clarify that the enhancement of IMA energy primarily results from two factors: one is the weakness of the Co-d and Co-d orbital hybridization and the other is the augmentation of the Co-d and Co-d orbital hybridization. Meanwhile, calculation results suggest that the Kosterlitz-Thouless phase transition temperature () of a 2D magnet Gr/CoBr (23.8 K) is higher than that of a 2D monolayer CoBr (1.35 K). By decreasing the interlayer distances, the proximity effect is more pronounced and band splitting appears. Moreover, by taking into account spin-orbit coupling, a band gap of approximately 14.3 meV and the quantum anomalous Hall effect (QAHE) are attained by decreasing the interlayer distance by 1.0 Å. Inspired by the above conclusions, we design a topological field transistor device model. Our results support that the vdW interlayer distance can be used to modulate the IMA energy and QAHE of materials, providing a pathway for the development of new low-power spintronic devices.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52173283), Taishan Scholar Program of Shandong Province (Grant No. ts20190939), and Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043).
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文) Electronic property and topological phase transition in a graphene/CoBr2 heterostructure 2024 Chin. Phys. B 33 027901
[1] Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H, Huang R, Kim J S, Li T, Li Y, Liechti K M, Lu N, Park H S, Reed E J, Wang P, Yakobson B I, Zhang T, Zhang Y W, Zhou Y and Zhu Y 2017 Extreme Mech. Lett.13 42 [2] Miro P, Audiffred M and Heine T 2014 Chem. Soc. Rev.43 6537 [3] Siahrostami S, Tsai C, Karamad M, Koitz R, Garcia-Melchor M, Bajdich M, Vojvodic A, Abild-Pedersen F, Norskov J K and Studt F 2016 Catal. Lett.146 1917 [4] Han W, Kawakami R K, Gmitra M and Fabian J 2014 Nat. Nanotechnol.9 794 [5] Ren Y, Qiao Z and Niu Q 2016 Rep. Prog. Phys.79 066501 [6] Yang S A 2016 Spin6 1640003 [7] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 ACS Appl. Nano Mater.6 14003 [8] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B74 165310 [9] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B75 041401 [10] Zollner K, Faria P E Jr and Fabian J 2019 Phys. Rev. B100 085128 [11] Cardoso C, Soriano D, Garcia-Martinez N A and Fernandez-Rossier J 2018 Phys. Rev. Lett.121 067701 [12] Hallal A, Ibrahim F, Yang H, Roche S and Chshiev M 2017 2D Materials4 025074 [13] Khokhriakov D, Cummings A W, Song K, Vila M, Karpiak B, Dankert A, Roche S and Dash S P 2018 Sci. Adv.4 eaat9349 [14] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A H and Niu Q 2014 Phys. Rev. Lett.112 116404 [15] Zollner K, Gmitra M, Frank T and Fabian J 2016 Phys. Rev. B94 155441 [16] Ci P, Chen Y, Kang J, Suzuki R, Choe H S, Suh J, Ko C, Park T, Shen K, Iwasa Y, Tongay S, Ager J W, III, Wang L W and Wu J 2017 Nano Lett.17 4982 [17] Gong C, Kim E M, Wang Y, Lee G and Zhang X 2019 Nat. Commun.10 2657 [18] Song T, Fei Z, Yankowitz M, Lin Z, Jiang Q, Hwangbo K, Zhang Q, Sun B, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J-H, Cobden D H, Dean C R, Xiao D and Xu X 2019 Nat. Mater.18 1298 [19] Yao W, Wang E, Bao C, Zhang Y, Zhang K, Bao K, Chan C K, Chen C, Avila J, Asensio M C, Zhu J and Zhou S 2018 Proc. Natl. Acad. Sci. USA115 6928 [20] Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I and Tartakovskii A I 2019 Nature567 81 [21] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature556 43 [22] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C 2013 Science340 1427 [23] Han Y T, Ji W X, Wang P J, Li P and Zhang C W 2023 Nanoscale15 6830 [24] Li S S, Ji W X, Hu S J, Zhang C W and Yan S S 2017 ACS Appl. Mater. Interfaces9 41443 [25] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B105 195112 [26] Jin C, Kim J, Utama M I B, Regan E C, Kleemann H, Cai H, Shen Y, Shinner M J, Sengupta A, Watanabe K, Taniguchi T, Tongay S, Zettl A and Wang F 2018 Science360 893 [27] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science365 605 [28] Yu H, Liu G B, Tang J, Xu X and Yao W 2017 Sci. Adv.3 e1701696 [29] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett.110 213101 [30] Wu B, Song Y L, Ji W X, Wang P J, Zhang S F and Zhang C W 2023 Phys. Rev. B107 214419 [31] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B96 205433 [32] Gmitra M, Konschuh S, Ertler C, Ambrosch-Draxl C and Fabian J 2009 Phys. Rev. B80 235431 [33] Sichau J, Prada M, Anlauf T, Lyon T J, Bosnjak B, Tiemann L and Blick R H 2019 Phys. Rev. Lett.122 046403 [34] Zhang J, Zhao B, Yao Y and Yang Z 2015 Phys. Rev. B92 165418 [35] Qiao Z, Jiang H, Li X, Yao Y and Niu Q 2012 Phys. Rev. B85 115439 [36] Han Y, Yan Z, Li Z, Xu X, Zhang Z, Niu Q and Qiao Z 2023 Phys. Rev. B107 205412 [37] Su S, Barlas Y, Li J, Shi J and Lake R K 2017 Phys. Rev. B95 075418 [38] Zhang H S, Ning Y H, Yang W J, Zhang J Y, Zhang R Q and Xu X H 2019 Phys. Chem. Chem. Phys.21 17087 [39] Liu Z, Han Y, Ren Y, Niu Q and Qiao Z 2021 Phys. Rev. B104 L121403 [40] Liu Z, Ren Y, Han Y, Niu Q and Qiao Z 2022 Phys. Rev. B106 195303 [41] Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J and Niu Q 2010 Phys. Rev. B82 161414 [42] Zanolli Z, Niu C, Bihlmayer G, Mokrousov Y, Mavropoulos P, Verstraete M J and Blügel S 2018 Phys. Rev. B98 155404 [43] Cui Q, Liang J, Yang B, Wang Z, Li P, Cui P and Yang H 2020 Phys. Rev. B101 214439 [44] Bedoya-Pinto A, Ji J R, Pandeya A K, Gargiani P, Valvidares M, Sessi P, Taylor J M, Radu F, Chang K and Parkin S S P 2021 Science374 616 [45] Honjo H, Ikeda S, Sato H, Sato S, Watanabe T, Miura S, Nasuno T, Noguchi Y, Yasuhira M, Tanigawa T, Koike H, Muraguchi M, Niwa M, Ito K, Ohno H and Endoh T 2016 IEEE Trans. Magn.52 1 [46] Kent A D 2010 Nat. Mater.9 699 [47] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 Nanoscale15 8395 [48] Chen P, Zou J Y and Liu B G 2017 Phys. Chem. Chem. Phys.19 13432 [49] Lv H Y, Lu W J, Luo X, Zhu X B and Sun Y P 2019 Phys. Rev. B99 134416 [50] Zhou Y, Lu H, Zu X and Gao F 2016 Sci. Rep.6 19407 [51] Blochl 1994 Phys. Rev. B50 17953 [52] Kresse and Furthmuller 1996 Phys. Rev. B54 11169 [53] Kresse and Hafner 1993 Phys. Rev. B47 558 [54] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [55] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B44 943 [56] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B57 1505 [57] Jabar A, Masrour R, Kadim G, Hamedoun M, Hourmatallah A, Benzakour N, Rezzouk A, Bouslykhane K and Kharbach J 2021 Commun. Theor. Phys.73 1663 [58] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun.185 2309 [59] Wang X, Yates J R, Souza I and Vanderbilt D 2006 Phys. Rev. B74 195118 [60] Wilkinson M K, Cable J W, Wollan E O and Koehler W C 1959 Phys. Rev.113 497 [61] Gabrys P A, Seo S E, Wang M X, Oh E, Macfarlane R J and Mirkin C A 2018 Nano Lett.18 579 [62] Horide T, Kametani F, Yoshioka S, Kitamura T and Matsumoto K 2017 ACS Nano11 1780 [63] Jin M, Zhang H, Wang J, Zhong X, Lu N, Li Z, Xie Z, Kim M J and Xia Y 2012 ACS Nano6 2566 [64] Langjahr P A, Lange F F, Wagner T and Rühle M 1998 Acta Mater.46 773 [65] Liu J and Zhang J 2020 Chem. Rev.120 2123 [66] Shelke V, Mazumdar D, Srinivasan G and Gupta A 2011 J. Appl. Phys.109 07D914 [67] Calderon C E, Plata J J, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl M J, Hart G, Nardelli M B and Curtarolo S 2015 Comput. Mater. Sci.108 233 [68] Tung J C and Guo G Y 2007 Phys. Rev. B76 094413 [69] Yan S, Qiao W, Jin D, Xu X, Mi W and Wang D 2021 Phys. Rev. B103 224432 [70] Chen W Z, Jiang L N, Yan Z R, Zhu Y, Wan C H and Han X F 2020 Phys. Rev. B101 144434 [71] Wang D S, Wu R and Freeman A J 1993 Phys. Rev. B47 14932 [72] Yang B S, Zhang J, Jiang L N, Chen W Z, Tang P, Zhang X G, Yan Y and Han X F 2017 Phys. Rev. B95 174424 [73] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys.6 1181 [74] Ren Y, Zeng J, Deng X, Yang F, Pan H and Qiao Z 2016 Phys. Rev. B94 085411 [75] Ren Y, Qiao Z and Niu Q 2020 Phys. Rev. Lett.124 166804 [76] Zhong P, Ren Y, Han Y, Zhang L and Qiao Z 2017 Phys. Rev. B96 241103
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.