Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 067402    DOI: 10.1088/1674-1056/ad362e
RAPID COMMUNICATION Prev   Next  

Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5

Bei Jiang(江北)1,2,†, Jingyu Yao(姚静宇)1,2,†, Dayu Yan(闫大禹)1,2,†, Zhaopeng Guo(郭照芃)1, Gexing Qu(屈歌星)1,2, Xiutong Deng(邓修同)1,2, Yaobo Huang(黄耀波)4, Hong Ding(丁洪)5,6, Youguo Shi(石友国)1,2,3, Zhijun Wang(王志俊)1,2, and Tian Qian(钱天)1,‡
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
5 Tsung-Dao Lee Institute, New Cornerstone Science Laboratory, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 201210, China;
6 Hefei National Laboratory, Hefei 230088, China
Abstract  Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications. Here we study the evolution of insulating ground states of Ta$_{2}$Pd$_{3}$Te$_{5}$ and Ta$_{2}$Ni$_{3}$Te$_{5}$ under in-situ surface potassium deposition via angle-resolved photoemission spectroscopy. Our results confirm the excitonic insulator character of Ta$_{2}$Pd$_{3}$Te$_{5}$. Upon surface doping, the size of its global gap decreases obviously. After a deposition time of more than 7 min, the potassium atoms induce a metal-insulator phase transition and make the system recover to a normal state. In contrast, our results show that the isostructural compound Ta$_{2}$Ni$_{3}$Te$_{5}$ is a conventional insulator. The size of its global gap decreases upon surface doping, but persists positive throughout the doping process. Our results not only confirm the excitonic origin of the band gap in Ta$_{2}$Pd$_{3}$Te$_{5}$, but also offer an effective method for designing functional quantum devices in the future.
Keywords:  excitonic insulator      metal-insulator phase transition      surface doping      angle-resolved photoemission spectroscopy  
Received:  20 February 2024      Revised:  12 March 2024      Accepted manuscript online:  21 March 2024
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.35.-y (Excitons and related phenomena)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
Fund: Project supported by the Ministry of Science and Technology of China (Grant No. 2022YFA1403800), the National Natural Science Foundation of China (Grant Nos. U2032204, 12188101, and U22A6005), the Chinese Academy of Sciences (Grant No. XDB33000000), the Synergetic Extreme Condition User Facility (SECUF), and the Center for Materials Genome.
Corresponding Authors:  Tian Qian     E-mail:  tqian@iphy.ac.cn

Cite this article: 

Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天) Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5 2024 Chin. Phys. B 33 067402

[1] Mott N F 1961 Philos. Mag. 6 287
[2] Halperin B I and Rice T M 1968 Rev. Mod. Phys. 40 755
[3] Kohn W 1967 Phys. Rev. Lett. 19 439
[4] Jérome D, Rice T M and Kohn W 1967 Phys. Rev. 158 462
[5] Chen L, Han T T, Cai C, Wang Z G, Wang Y D, Xin Z M and Zhang Y 2020 Phys. Rev. B 102 161116
[6] Monney C, Cercellier H, Battaglia C, Schwier E F, Didiot C, Garnier M G, Beck H and Aebi P 2009 Physica B 404 3172
[7] Sun B S, Zhao W J, Palomaki T, Fei Z Y, Runburg E, Malinowski P, Huang X, Cenker J, Cui Y T, Chu J H, Xu X D, Ataei S S, Varsano D, Palummo M, Molinari E, Rontani M and Cobden D H 2022 Nat. Phys. 18 94
[8] Tang T W, Wang H Y, Duan S F, Yang Y Y, Huang C Z, Guo Y F, Qian D and Zhang W T 2020 Phys. Rev. B 101 235148
[9] Okazaki K, Ogawa Y, Suzuki T, Yamamoto T, Someya T, Michimae S, Watamabe M, Lu Y F, Nohara M, Takagi H, Katayama N, Sawa H, Fujisawa M, Kanai T, Ishii N, Itatani J, Mizokawa T and Shin S 2018 Nat. Commun. 9 4322
[10] Wilson J A 1977 Solid State Commun. 22 551
[11] Wilson J A 1978 Phys. Status Solidi B 86 11
[12] Pillo T, Hayoz J, Berger H, Lévy F, Schlapbach L and Aebi P 2000 Phys. Rev. B 61 16213
[13] Kidd T E, Miller T, Chou M Y and Chiang T C 2002 Phys. Rev. Lett. 88 226402
[14] Cercellier H, Monney C, Clerc F, Battaglia C, Despont L, Garnier M G, Beck H, Aebi P, Patthey L, Berger H and Forró L 2007 Phys. Rev. Lett. 99 146403
[15] Monney C, Schwier E F, Garnier M G, Mariotti N, Didiot C, Beck H, Aebi P, Cercellier H, Marcus J, Battaglia C, Berger H and Titov A N 2010 Phys. Rev. B 81 155104
[16] Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, MacDougall G J, Chiang T C, Fradkin E, Wezel J V and Abbamonte P 2017 Science 358 1314
[17] Wakisaka Y, Sudayama T, Takubo K, Mizokawa T, Arita M, Namatame H, Taniguchi M, Katayama N, Nohara M and Takagi H 2009 Phys. Rev. Lett. 103 026402
[18] Kaneko T, Toriyama T, Konishi T and Ohta Y 2013 Phys. Rev. B 87 035121
[19] Seki K, Wakisaka Y, Kaneko T, Toriyama T, Konishi T, Sudayama T, Saini N L, Arita M, Namatame H, Taniguchi M, Katayama N, Nohara M, Takagi H, Mizokawa T and Ohta Y 2014 Phys. Rev. B 90 155116
[20] Larkin T I, Yaresko A N, Pröpper D, Kikoin K A, Lu Y F, Takayama T, Mathis Y L, Rost A W, Takagi H, Keimer B and Boris A V 2017 Phys. Rev. B 95 195144
[21] Lu Y F, Kono H, Larkin T I, Rost A W, Takayama T, Boris A V, Keimer B and Takagi H 2017 Nat. Commun. 8 14408
[22] Sugimoto K, Nishimoto S, Kaneko T and Ohta Y 2018 Phys. Rev. Lett. 120 247602
[23] Fukutani K, Stania R, Kwon C I, Kim J S, Kong K J, Kim J and Yeom H W 2021 Nat. Phys. 17 1024
[24] Zhao J F, Ou H W, Wu G, Xie B P, Zhang Y, Shen D W, Wei J, Yang L X, Dong J K, Arita M, Namatame H, Taniguchi M, Chen X H and Feng D L 2007 Phys. Rev. Lett. 99 146401
[25] Fukutani K, Stania R, Jung J, Schwier E F, Shimada K, Kwon C I, Kim J S and Yeom H W 2019 Phys. Rev. Lett. 123 206401
[26] Mitsuoka T, Suzuki T, Takagi H, Katayama N, Sawa H, Nohara M, Watanabe M, Xu J D, Ren Q H, Fujisawa M, Kanai T, Itatani J, Shin S, Okazaki K and Mizokawa T 2020 J. Phys. Soc. Jpn. 89 124703
[27] Huang J R, Jiang B, Yao J Y, et al. 2024 Phys. Rev. X 14 011046
[28] Zhang P, Dong Y Y, Yan D Y, et al. 2024 Phys. Rev. X 14 011047
[29] Yao J Y, Sheng H H, Zhang R H, Pang R T, Zhou J J, Wu Q S, Weng H M, Dai X, Fang Z and Wang Z J 2024 arXiv: 2401.01222
[condmat.mtrl-sci]
[30] Guo Z P, Yan D Y, Sheng H H, Nie S M, Shi Y G and Wang Z J 2021 Phys. Rev. B 103 115145
[31] Qian T, Xu N, Shi Y B, Nakayama K, Richard P, Kawahara T, Sato T, Takahashi T, Neupane M, Xu Y M, Wang X P, Xu G, Dai X, Fang Z, Cheng P, Wen H H and Ding H 2011 Phys. Rev. B 83 140513
[32] Gao S Y, Zhang S, Wang C X, et al. 2023 Phys. Rev. X 13 041049
[33] Khoo K H, Mazzoni M S C and Louie S G 2004 Phys. Rev. B 69 201401
[34] Ishigami M, Sau J D, Aloni S, Cohen M L and Zettl A 2005 Phys. Rev. Lett. 94 056804
[35] Ramasubramaniam A, Naveh D and Towe E 2011 Phys. Rev. B 84 205325
[36] Kang M G, Kim B, Ryu S H, Jung S W, Kim J, Moreschini L, Jozwiak C, Rotenberg E, Bostwick A and Kim K S 2017 Nano Lett. 17 1610
[37] Kim J, Balk S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723
[38] Zhang P, Richard P, Qian T, Xu Y M, Dai X and Ding H 2011 Rev. Sci. Instrum. 82 043712
[1] Coexistence of Dirac and Weyl points in non-centrosymmetric semimetal NbIrTe4
Qingxin Liu(刘清馨), Yang Fu(付阳), Pengfei Ding(丁鹏飞), Huan Ma(马欢), Pengjie Guo(郭朋杰), Hechang Lei(雷和畅), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(4): 047104.
[2] Angle-resolved photoemission study of NbGeSb with non-symmorphic symmetry
Huan Ma(马欢), Ning Tan(谭宁), Xuchuan Wu(吴徐传), Man Li(李满), Yiyan Wang(王义炎), Hongyan Lu(路洪艳), Tianlong Xia(夏天龙), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(2): 027102.
[3] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[4] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[5] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[6] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[7] Rubidium-induced phase transitions among metallic, band-insulating, Mott-insulating phases in 1T-TaS2
Zhengguo Wang(王政国), Weiliang Yao(姚伟良), Yudi Wang(王宇迪), Ziming Xin(信子鸣), Tingting Han(韩婷婷), Lei Chen(陈磊), Yi Ou(欧仪), Yu Zhu(朱玉), Cong Cai(蔡淙), Yuan Li(李源), and Yan Zhang(张焱). Chin. Phys. B, 2023, 32(10): 107404.
[8] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[11] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[12] Quantization of the band at the surface of charge density wave material 2H-TaSe2
Man Li(李满), Nan Xu(徐楠), Jianfeng Zhang(张建丰), Rui Lou(娄睿), Ming Shi(史明), Lijun Li(黎丽君), Hechang Lei(雷和畅), Cedomir Petrovic, Zhonghao Liu(刘中灏), Kai Liu(刘凯), Yaobo Huang(黄耀波), and Shancai Wang(王善才). Chin. Phys. B, 2021, 30(4): 047305.
[13] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[14] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[15] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡. Chin. Phys. B, 2020, 29(10): 107402.
No Suggested Reading articles found!