|
|
Gate-field control of valley polarization in valleytronics |
Ting-Ting Zhang(张婷婷)1,†, Yilin Han(韩依琳)2, Run-Wu Zhang(张闰午)2, and Zhi-Ming Yu(余智明)2 |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Valleytronics materials are a kind of special semiconductors which can host multiple symmetry-connected and well-separated electron or hole pockets in the Brillouin zone when the system is slightly n or p doped. Since the low-energy particles residing in these pockets generally are not easily scattered to each other by small perturbations, they are endowed with an additional valley degree of freedom. Analogous to spin, the valley freedom can be used to process information, leading to the concept of valleytronics. The prerequisite for valleytronics is the generation of valley polarization. Thus, a focus in this field is achieving the electric generation of valley polarization, especially the static generation by the gate electric field alone. In this work, we briefly review the latest progress in this research direction, focusing on the concepts of the couplings between valley and layer, i.e., the valley-layer coupling which permits the gate-field control of the valley polarization, the couplings between valley, layer, and spin in magnetic systems, the physical properties, the novel designing schemes for electronic devices, and the material realizations of the gate-controlled valleytronics materials.
|
Received: 29 November 2023
Revised: 30 March 2024
Accepted manuscript online: 18 April 2024
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12004035) and the National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas). |
Corresponding Authors:
Ting-Ting Zhang
E-mail: ttzhang@iphy.ac.cn
|
Cite this article:
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明) Gate-field control of valley polarization in valleytronics 2024 Chin. Phys. B 33 067303
|
[1] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nature Reviews Materials 1 16055 [2] Vitale S A, Nezich D, Varghese J O, Kim P, Gedik N, Jarillo-Herrero P, Xiao D and Rothschild M 2018 Small 14 1801483 [3] Xin J, Tang Y, Liu Y, Zhao X, Pan H and Zhu T 2018 npj Quantum Materials 3 9 [4] Liu Y, Gao Y, Zhang S, He J, Yu J and Liu Z 2019 Nano Research 12 2695 [5] Tian H, Ren C and Wang S 2022 Nanotechnology 33 212001 [6] Awschalom D D and Flatté M E 2007 Nat. Phys. 3 153 [7] Bader S and Parkin S 2010 Annual Review of Condensed Matter Physics 1 71 [8] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 [9] Chappert C, Fert A and Van Dau F N 2007 Nat. Mater. 6 813 [10] Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J X, Sun H, Wang S, Song J C W, Battiato M, Yang H and Chia E E M 2019 Nat. Phys. 15 347 [11] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453 [12] Felser C, Fecher G H and Balke B 2007 Angewandte Chemie International Edition 46 668 [13] Feng Y P, Shen L, Yang M, Wang A, Zeng M, Wu Q, Chintalapati S and Chang C R 2017 WIREs Computational Molecular Science 7 e1313 [14] Han W, Kawakami R K, Gmitra M and Fabian J 2014 Nat. Nanotechnol. 9 794 [15] Li M, Zhang D, Gao Y, Cao C and Long M 2017 Organic Electronics 44 168 [16] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190 [17] Roche S, Akerman J, Beschoten B, Charlier J C, Chshiev M, Dash S P, Dlubak B, Fabian J, Fert A, Guimaraes M, Guinea F, Grigorieva I, Schönenberger C, Seneor P, Stampfer C, Valenzuela S O, Waintal X and van Wees B 2015 2D Materials 2 030202 [18] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 [19] Wunderlich J, Park B G, Irvine A C, Zarbo L P, Rozkotová E, Nemec P, Novák V, Sinova J and Jungwirth T 2010 Science 330 1801 [20] Zutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323 [21] Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, De Poortere E P and Shayegan M 2006 Phys. Rev. Lett. 97 186404 [22] Li J, Zhang R X, Yin Z, Zhang J, Watanabe K, Taniguchi T, Liu C and Zhu J 2018 Science 362 1149 [23] Pan H, Li X, Zhang F and Yang S A 2015 Phys. Rev. B 92 041404 [24] Pan H, Li X, Jiang H, Yao Y and Yang S A 2015 Phys. Rev. B 91 045404 [25] Qiao Z, Jung J, Lin C, Ren Y, MacDonald A H and Niu Q 2014 Phys. Rev. Lett. 112 206601 [26] Shkolnikov Y P, De Poortere E P, Tutuc E and Shayegan M 2002 Phys. Rev. Lett. 89 226805 [27] Vitale S A, Nezich D, Varghese J O, Kim P, Gedik N, Jarillo-Herrero P, Xiao D and Rothschild M 2018 Small 14 1801483 [28] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [29] Chen C, Chen X, Shao Y, Deng B, Guo Q, Ma C and Xia F 2018 ACS Photonics 5 3814 [30] Rodin A S, Gomes L C, Carvalho A and Castro Neto A H 2016 Phys. Rev. B 93 045431 [31] Beyer H, Rohde G, Grubišić Cabo A, Stange A, Jacobsen T, Bignardi L, Lizzit D, Lacovig P, Sanders C E, Lizzit S, Rossnagel K, Hofmann P and Bauer M 2019 Phys. Rev. Lett. 123 236802 [32] Ingla-Aynés J, Herling F, Fabian J, Hueso L E and Casanova F 2021 Phys. Rev. Lett. 127 047202 [33] Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A and Zeng H 2019 Nat. Commun. 10 4163 [34] Pisoni R, Davatz T, Watanabe K, Taniguchi T, Ihn T and Ensslin K 2019 Phys. Rev. Lett. 123 117702 [35] Zhang X, Hu R Z, Li H O, Jing F M, Zhou Y, Ma R L, Ni M, Luo G, Cao G, Wang G L, Hu X, Jiang H W, Guo G C and Guo G P 2020 Phys. Rev. Lett. 124 257701 [36] Scuri G, Andersen T I, Zhou Y, Wild D S, Sung J, Gelly R J, Bérubé D, Heo H, Shao L, Joe A Y, Mier Valdivia A M, Taniguchi T, Watanabe K, Lončar M, Kim P, Lukin M D and Park H 2020 Phys. Rev. Lett. 124 217403 [37] Zhang H, Yang W, Ning Y and Xu X 2020 Phys. Rev. B 101 205404 [38] Dankert A and Dash S P 2017 Nat. Commun. 8 16093 [39] Dong X J, Jia K, Ji W X, Li S S and Zhang C W 2023 ACS Applied Electronic Materials 5 2046 [40] Gurram M, Omar S and van Wees B J 2018 2D Materials 5 032004 [41] Hidalgo-Sacoto R, Gonzalez R I, Vogel E E, Allende S, Mella J D, Cardenas C, Troncoso R E and Munoz F 2020 Phys. Rev. B 101 205425 [42] Hu T, Zhao G, Gao H, Wu Y, Hong J, Stroppa A and Ren W 2020 Phys. Rev. B 101 125401 [43] Li Q, Chen K Q and Tang L M 2020 Phys. Rev. Appl. 13 014064 [44] Ma X, Shao X, Fan Y, Liu J, Feng X, Sun L and Zhao M 2020 Journal of Materials Chemistry C 8 14895 [45] Wang M, Zhou W, Bi L, Qiu C, Ke M and Liu Z 2020 Nat. Commun. 11 3000 [46] Edwards B, Dowinton O, Hall A E, Murgatroyd P A E, Buchberger S, Antonelli T, Siemann G R, Rajan A, Morales E A, Zivanovic A, Bigi C, Belosludov R V, Polley C M, Carbone D, Mayoh D A, Balakrishnan G, Bahramy M S and King P D C 2023 Nat. Mater. 22 459 [47] Akhmerov A R, Bardarson J H, Rycerz A and Beenakker C W J 2008 Phys. Rev. B 77 205416 [48] Cheng S g, Liu H, Jiang H, Sun Q F and Xie X C 2018 Phys. Rev. Lett. 121 156801 [49] Cresti A, Grosso G and Parravicini G P 2008 Phys. Rev. B 77 233402 [50] Garcia-Pomar J L, Cortijo A and Nieto-Vesperinas M 2008 Phys. Rev. Lett. 100 236801 [51] Grujić M M, Tadić M Z and Peeters F M 2014 Phys. Rev. Lett. 113 046601 [52] Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806 [53] Jiang Y, Low T, Chang K, Katsnelson M I and Guinea F 2013 Phys. Rev. Lett. 110 046601 [54] Nguyen V H, Dechamps S, Dollfus P and Charlier J C 2016 Phys. Rev. Lett. 117 247702 [55] Niu Q, Chang M C, Wu B, Xiao D and Cheng R 2017 Physical Effects of Geometric Phases (World Scientific) [56] Rycerz A, Tworzydło J and Beenakker C W J 2007 Nat. Phys. 3 172 [57] Settnes M, Power S R, Brandbyge M and Jauho A P 2016 Phys. Rev. Lett. 117 276801 [58] Liu G B, Xiao D, Yao Y, Xu X and Yao W 2015 Chemical Society Reviews 44 2643 [59] Sui M, Chen G, Ma L, Shan W Y, Tian D, Watanabe K, Taniguchi T, Jin X, Yao W, Xiao D and Zhang Y 2015 Nat. Phys. 11 1027 [60] Huang Z, Xian G, Xiao X, Han X, Qian G, Shen C, Yang H, Chen H, Liu B, Wang Z and Gao H J 2023 Nano Lett. 23 3274 [61] Lu J, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X and Gao H J 2017 ACS Nano 11 1689 [62] Wang Y, Li L, Yao W, Song S, Sun J T, Pan J, Ren X, Li C, Okunishi E, Wang Y Q, Wang E, Shao Y, Zhang Y Y, Yang H t, Schwier E F, Iwasawa H, Shimada K, Taniguchi M, Cheng Z, Zhou S, Du S, Pennycook S J, Pantelides S T and Gao H J 2015 Nano Lett. 15 4013 [63] Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science 346 448 [64] Hu H, Tong W Y, Shen Y H, Wan X and Duan C G 2020 npj Computational Materials 6 129 [65] Lee J, Mak K F and Shan J 2016 Nat. Nanotechnol. 11 421 [66] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489 [67] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T and Tarucha S 2015 Nat. Phys. 11 1032 [68] Tong W Y, Gong S J, Wan X and Duan C G 2016 Nat. Commun. 7 13612 [69] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [70] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 [71] Glazov M M and Golub L E 2020 Phys. Rev. Lett. 125 157403 [72] Cysne T P, Costa M, Canonico L M, Nardelli M B, Muniz R B and Rappoport T G 2021 Phys. Rev. Lett. 126 056601 [73] Cui Q, Zhu Y, Liang J, Cui P and Yang H 2021 Phys. Rev. B 103 085421 [74] Gong Z, Liu G B, Yu H, Xiao D, Cui X, Xu X and Yao W 2013 Nat. Commun. 4 2053 [75] Lin L, Xu Y, Zhang S, Ross I M, Ong A C M and Allwood D A 2013 ACS Nano 7 8214 [76] Liu G B, Xiao D, Yao Y, Xu X and Yao W 2015 Chemical Society Reviews 44 2643 [77] Pisoni R, Kormányos A, Brooks M, Lei Z, Back P, Eich M, Overweg H, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, Imamoglu A, Burkard G, Ihn T and Ensslin K 2018 Phys. Rev. Lett. 121 247701 [78] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 [79] Yuan H, Wang X, Lian B, Zhang H, Fang X, Shen B, Xu G, Xu Y, Zhang S C, Hwang H Y and Cui Y 2014 Nat. Nanotechnol. 9 851 [80] Zeng H, Liu G B, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W and Cui X 2013 Scientific Reports 3 1608 [81] Ai H, Liu D, Geng J, Wang S, Lo K H and Pan H 2021 Physical Chemistry Chemical Physics 23 3144 [82] Zhao J, Yang C, Yuan W, Zhang D, Long Y, Pan Y, Chen H, Zhong Z and Ren J 2022 Phys. Rev. Lett. 129 275501 [83] Cai X, Connors E J, Edge L F and Nichol J M 2023 Nat. Phys. 19 386 [84] Jones A M, Yu H, Ross J S, Klement P, Ghimire N J, Yan J, Mandrus D G, Yao W and Xu X 2014 Nat. Phys. 10 130 [85] Qiao Z, Jung J, Niu Q and MacDonald A H 2011 Nano Lett. 11 3453 [86] San-Jose P, Prada E, McCann E and Schomerus H 2009 Phys. Rev. Lett. 102 247204 [87] Ju L, Shi Z, Nair N, Lv Y, Jin C, Velasco J, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J and Wang F 2015 Nature 520 650 [88] Hanakata P Z, Carvalho A, Campbell D K and Park H S 2016 Phys. Rev. B 94 035304 [89] Yu Z M, Guan S, Sheng X L, Gao W and Yang S A 2020 Phys. Rev. Lett. 124 037701 [90] Zhang R W, Cui C, Li R, Duan J, Li L, Yu Z M and Yao Y 2023 arXiv:2306.08902 [physics.app-ph] [91] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbaszek B 2018 Rev. Mod. Phys. 90 021001 [92] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 [93] Zhao S, Li X, Dong B, Wang H, Wang H, Zhang Y, Han Z and Zhang H 2021 Reports on Progress in Physics 84 026401 [94] Han Y, Cui C, Li X P, Zhang Z, Yu Z M and Yao Y 2024 arXiv:2306.08384 [cond-mat.mes-hall] [95] Cui C, Han Y, Zhang T T, Yu Z M and Yao Y 2023 Phys. Rev. B 108 155115 [96] Zhao S, Li Z and Yang J 2014 J. Am. Chem. Soc. 136 13313 [97] Guan S, Liu Y, Yu Z M, Wang S S, Yao Y and Yang S A 2017 Phys. Rev. Mater. 1 054003 [98] Liang L, Yang Y, Wang X and Li X 2023 Nano Lett. 23 858 [99] Wang H, Liang L, Wang X, Wang X and Li X 2024 Appl. Phys. Lett. 124 092906 [100] Xu X, He Z, Dai Y, Huang B, Kou L and Ma Y 2021 Appl. Phys. Lett. 119 073101 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|