Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 045203    DOI: 10.1088/1674-1056/ad1820
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of extraction voltage on electron and ion behavior characteristics

Ao Xu(徐翱), Pingping Gan(甘娉娉), Yuanjie Shi(石元杰), and Lei Chen(陈磊)
Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China
Abstract  The characteristics of the extracted ion current have a significant impact on the design and testing of ion source performance. In this paper, a 2D in space and 3D in velocity space particle in cell (2D3V PIC) method is utilized to simulate plasma motion and ion extraction characteristics under various initial plasma velocity distributions and extraction voltages in a Cartesian coordinate system. The plasma density is of the order of 1015 m-3—1016 m-3 and the extraction voltage is of the order of 100 V—1000 V. The study investigates the impact of various extraction voltages on the velocity and density distributions of electrons and positive ions, and analyzes the influence of different initial plasma velocity distributions on the extraction current. The simulation results reveal that the main reason for the variation of extraction current is the space-charge force formed by the relative aggregation of positive and negative net charges. This lays the foundation for a deeper understanding of extraction beam characteristics.
Keywords:  extraction voltage      plasma      ion beam      ion current  
Received:  25 October 2023      Revised:  15 December 2023      Accepted manuscript online:  22 December 2023
PACS:  52.65.-y (Plasma simulation)  
  52.65.Rr (Particle-in-cell method)  
  29.25.-t (Particle sources and targets)  
  29.25.Ni (Ion sources: positive and negative)  
Fund: Project supported by Presidential Foundation of CAEP (Grant No. YZJJZQ2022016) and the National Natural Science Foundation of China (Grant No. 52207177).
Corresponding Authors:  Pingping Gan     E-mail:  ganpingping@caep.cn

Cite this article: 

Ao Xu(徐翱), Pingping Gan(甘娉娉), Yuanjie Shi(石元杰), and Lei Chen(陈磊) Influence of extraction voltage on electron and ion behavior characteristics 2024 Chin. Phys. B 33 045203

[1] Abdelrahman M M, Basal N I and Zakhary S G 2012 Chin. Phys. C 36 344
[2] Wolf B 1995 Handbook of Ion Sources (Boca Raton:CRC Press)
[3] Kosonen S T, Kalvas T, Tarvainen O and Toivanen V 2022 J. Phys.:Conf. Ser. 2244 12079
[4] Li H L and A B Sun 2021 Comput. Phys. Commun. 259 0107629
[5] Abadi M R N and Mahjour-Shafiei M 2021 Rev. Sci. Instrum. 92 123501
[6] Abdelrahman M M 2012 Ain Shams Engineering Journal 3 71
[7] Soliman B A, Abdelrahman M M, Helal A G and Abdelsalam F W 2011 Chin. Phys. C 35 83
[8] Dorf M A, Sidorov A V, Zorin V G, Bohanov A F, Vodopyanov A V, Izotov I V, Razin S V and Skalyga V A 2007 J. Appl. Phys. 102 054504
[9] Keller R 1990 Nuclear Instruments and Methods in Physics Research A:Accelerators, Detectors, Associated Equipment 298 247
[10] Garner A L, Darr A M and Harsha N R S 2022 IEEE Trans. Plasma Sci. 50 2528
[11] Huang H and Liu Y J 2019 IEEE Trans. Plasma Sci. 47 3631
[12] Lafleur T and Aanesland A 2014 Phys. Plasmas 21 123506
[13] Benilov M S 2009 Plasma Sources Sci. Technol. 18 014005
[14] Masamune S and Yukimura K 2006 IEEE Trans. Plasma Sci. 34 1195
[15] Mandl S, Gunzel R and Moller W 1998 J. Phys. D:Appl. Phys. 31 1109
[16] Baalrud S D, Scheiner B, Yee B T, Hopkins M M and Barnat E 2020 Plasma Sources Sci. Technol. 29 053001
[17] Su Y, Li J, Wang H and Xu A 2021 IEEE Trans. Plasma Sci. 49 1214
[18] Li J, Yang F, Fan Z, Du W and Xu A 2022 IEEE Trans. Plasma Sci. 50 1097
[1] Magnetic diagnostics layout design for CFETR plasma equilibrium reconstruction
Qingze Yu(于庆泽), Yao Huang(黄耀), Zhengping Luo(罗正平), Yuehang Wang(汪悦航), Zijie Liu(刘自结), Wangyi Rui(芮望颐), Kai Wu(吴凯), Bingjia Xiao(肖炳甲), and Jiangang Li(李建刚). Chin. Phys. B, 2024, 33(4): 045201.
[2] Error field penetration in J-TEXT tokamak based on two-fluid drift-MHD model
Wen Wang(王文), Tao Xu(徐涛), Yi Zhang(张仪), and the J-TEXT team. Chin. Phys. B, 2024, 33(4): 045202.
[3] Plasma potential measurements using an emissive probe made of oxide cathode
Jian-Quan Li(李建泉), Hai-Jie Ma(马海杰), and Wen-Qi Lu(陆文琪). Chin. Phys. B, 2024, 33(4): 045205.
[4] Probing the peripheral self-generated magnetic field distribution in laser-plasma magnetic reconnection with Martin—Puplett interferometer polarimeter
Ya-Peng Zhang(张雅芃), Jia-Wen Yao(姚嘉文), Zheng-Dong Liu(刘正东), Zuo-Lin Ma(马作霖), and Jia-Yong Zhong(仲佳勇). Chin. Phys. B, 2024, 33(4): 045206.
[5] Co-doped BaFe2As2 Josephson junction fabricated with a focused helium ion beam
Ziwen Chen(陈紫雯), Yan Zhang(张焱), Ping Ma(马平), Zhongtang Xu(徐中堂), Yulong Li(李宇龙), Yue Wang(王越), Jianming Lu(路建明), Yanwei Ma(马衍伟), and Zizhao Gan(甘子钊). Chin. Phys. B, 2024, 33(4): 047405.
[6] Wave field structure and power coupling features of blue-core helicon plasma driven by various antenna geometries and frequencies
Chao Wang(王超), Jia Liu(刘佳), Lei Chang(苌磊), Ling-Feng Lu(卢凌峰), Shi-Jie Zhang(张世杰), and Fan-Tao Zhou(周帆涛). Chin. Phys. B, 2024, 33(3): 035201.
[7] Three-dimensional magnetic reconnection in complex multiple X-point configurations in an ancient solar-lunar terrestrial system
Xiang-Lei He(何向磊), Ao-Hua Mao(毛傲华), Meng-Meng Sun(孙萌萌), Ji-Tong Zou(邹继同), and Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2024, 33(3): 035202.
[8] Numerical studies for plasmas of a linear plasma device HIT-PSI with geometry modified SOLPS-ITER
Min Wang(王敏), Qiuyue Nie(聂秋月), Tao Huang(黄韬), Xiaogang Wang(王晓钢), and Yanjie Zhang(张彦杰). Chin. Phys. B, 2024, 33(3): 035204.
[9] Differences between two methods to derive a nonlinear Schrödinger equation and their application scopes
Yu-Xi Chen(陈羽西), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2024, 33(2): 025203.
[10] Electron characteristics and dynamics in sub-millimeter pulsed atmospheric dielectric barrier discharge
Junlin Fang(方骏林), Yarong Zhang(张亚容), Chenzi Lu(卢陈梓), Lili Gu(顾莉莉), Shaofeng Xu(徐少锋), Ying Guo(郭颖), and Jianjun Shi(石建军). Chin. Phys. B, 2024, 33(1): 015201.
[11] Transition from a filamentary mode to a diffuse one with varying distance from needle to stream of an argon plasma jet
Hui-Min Xu(许慧敏), Jing-Ge Gao(高敬格), Peng-Ying Jia(贾鹏英), Jun-Xia Ran(冉俊霞), Jun-Yu Chen(陈俊宇), and Jin-Mao Li(李金懋). Chin. Phys. B, 2024, 33(1): 015205.
[12] Effect of sharp vacuum-plasma boundary on the electron injection and acceleration in a few-cycle laser driven wakefield
Guo-Bo Zhang(张国博), Song Liu(刘松), De-Bin Zou(邹德滨), Ye Cui(崔野), Jian-Peng Liu(刘建鹏), Xiao-Hu Yang(杨晓虎), Yan-Yun Ma(马燕云), and Fu-Qiu Shao(邵福球). Chin. Phys. B, 2023, 32(9): 095202.
[13] Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator
Borui Zheng(郑博睿), Yuanpeng Liu(刘园鹏), Minghao Yu(喻明浩), Yuanzhong Jin(金元中),Qian Zhang(张倩), and Quanlong Chen(陈全龙). Chin. Phys. B, 2023, 32(9): 095203.
[14] Theoretical analyses on the one-dimensional charged particle transport in a decaying plasma under an electrostatic field
Yao-Ting Wang(汪耀庭), Xin-Li Sun(孙鑫礼), Lan-Yue Luo(罗岚月), Zi-Ming Zhang(张子明), He-Ping Li(李和平), Dong-Jun Jiang(姜东君), and Ming-Sheng Zhou(周明胜). Chin. Phys. B, 2023, 32(9): 095201.
[15] Efficient hydrophilicity improvement of titanium surface by plasma jet in micro-hollow cathode discharge geometry
Peng-Ying Jia(贾鹏英), Han-Xiao Jia(贾焓潇), Jun-Xia Ran(冉俊霞), Kai-Yue Wu(吴凯玥), Jia-Cun Wu(武珈存), Xue-Xia Pang(庞学霞), and Xue-Chen Li(李雪辰). Chin. Phys. B, 2023, 32(8): 085202.
No Suggested Reading articles found!