Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 058702    DOI: 10.1088/1674-1056/ad1b3f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

In situ luminescence measurements of GaN/Al$_{\bf 2}$O$_{\bf 3}$ film under different energy proton irradiations

Wenli Jiang1, Xiao Ouyang1, Menglin Qiu1,2,†, Minju Ying1,2,‡, Lin Chen1,2, Pan Pang2, Chunlei Zhang1,2, Yaofeng Zhang1,2, and Bin Liao1,2
1 Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2 Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
Abstract  Ion beam-induced luminescence (IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al$_{2}$O$_{3}$ at varying ion energies, which allowed for the measurement of defects at different depths within the material. The energies of H$^{+}$ were set to 500 keV, 640 keV and 2 MeV, the Bragg peaks of which correspond to the GaN film, GaN/Al$_{2}$O$_{3}$ heterojunction and Al$_{2}$O$_{3}$ substrate, respectively. A photoluminescence measurement at 250 K was also performed for comparison, during which only near band edge (NBE) and yellow band luminescence in the GaN film were observed. The evolution of the luminescence of the NBE and yellow band in the GaN film was discussed, and both exhibited a decrease with the fluence of H$^{+}$. Additionally, the luminescence of F centers, induced by oxygen vacancies, and Cr$^{3+}$, resulting from the $^{2}$E$\,\to^{4}$A$_{2}$ radiative transition in Al$_{2}$O$_{3}$, were measured using 2 MeV H$^{+}$. The luminescence intensity of F centers increases gradually with the fluence of H$^{+}$. The luminescence evolution of Cr$^{3+}$ is consistent with a yellow band center, attributed to its weak intensity, and it is situated within the emission band of the yellow band in the GaN film. Our results show that IBIL measurement can effectively detect the luminescence behavior of multilayer films by adjusting the ion energy. Luminescence measurement can be excited by various techniques, but IBIL can satisfy in situ luminescence measurement, and multilayer structural materials of tens of micrometers can be measured through IBIL by adjusting the energy of the inducing ions. The evolution of defects at different layers with ion fluence can be obtained.
Keywords:  ion beam-induced luminescence (IBIL)      GaN/Al$_2$O$_3$      ion beam  
Received:  03 September 2023      Revised:  02 January 2024      Accepted manuscript online: 
PACS:  87.15.mq (Luminescence)  
  78.55.Cr (III-V semiconductors)  
  81.15.Jj (Ion and electron beam-assisted deposition; ion plating)  
Corresponding Authors:  Menglin Qiu,E-mail:mlqiu@bnu.edu.cn;Minju Ying,E-mail:mjying@bnu.edu.cn     E-mail:  mlqiu@bnu.edu.cn;mjying@bnu.edu.cn

Cite this article: 

Wenli Jiang, Xiao Ouyang, Menglin Qiu, Minju Ying, Lin Chen, Pan Pang, Chunlei Zhang, Yaofeng Zhang, and Bin Liao In situ luminescence measurements of GaN/Al$_{\bf 2}$O$_{\bf 3}$ film under different energy proton irradiations 2024 Chin. Phys. B 33 058702

[1] DenBaars S P, Feezell D, Kelchner K, Pimputkar S, Pan C C, Yen C C, Tanaka S, Zhao Y J, Pfaff N, Farrell R, Iza M, Keller S, Mishra U, Speck J S and Nakamura S 2013 Acta. Mater. 61 945
[2] Flack T J, Pushpakaran B N and Bayne S B 2016 J. Electron. Mater. 45 2673
[3] Yanagida T, Kato T, Nakauchi D, Okada G and Kawaguchi N 2021 Appl. Phys. Express. 14 082006
[4] Tung L T, Lin K L, Chang E Y, Huang W C, Hsiao Y L and Chiang C H 2009 J. Phys.: Conf. Ser. 187 012021
[5] Reshchikov M A 2011 Phys. Status. Solidi. 8 2136
[6] Reshchikov M A and Morkoç H 2005 J. Appl. Phys. 97 061301
[7] Reshchikov M A, McNamara J D, Helava H, Usikov A and Makarov Y 2018 Sci. Rep. 8 8091
[8] Reshchikov M A 2022 Phys. Status. Solidi. (b) 260 2200488
[9] Popov A I, Lushchik A, Shablonin E, Vasil’chenko E, Kotomin E A, Moskina A M and Kuzovkov V N 2018 Nucl. Instrum. Meth. B 433 93
[10] Kruzhalov A V, Milman I I, Ryabukhin O V, Revkov I G and Litovchenko E N 2010 Radiat. Meas. 45 362
[11] Shablonin E, Popov A I, Prieditis G, Vasil’chenko E and Lushchik A 2021 J. Nucl. Mater. 543 152600
[12] Makhov V N, Lushchik A, Lushchik C B, Kirm M, Vasil’chenko E, Vielhauer S, Harutunyan V V and Aleksanyan E 2008 Nucl. Instrum. Meth. B 266 2949
[13] Malo M, Moroño A and Hodgson E R. 2014 Fusion. Eng. Des. 89 2179
[14] Grygiel C, Moisy F, Sall M, Lebius H, Balanzat E, Madi T, Been T, Marie D and Monnet I 2017 Acta Mater. 140 157
[15] Gonçalves K A, Bitencourt J F S, Mittani J C R and Tatumi S H 2010 IOP Conf. Ser.: Mater. Sci. Eng. 15 012080
[16] Sarasola-Martin I, Correcher V and García-Guinea J 2021 J. Alloys Compd. 886 161262
[17] Nakagawa T, Sakaguchi I, Shibata N, Matsunaga K, Mizoguchi T, Yamamoto T, Haneda H and Ikuhara Y 2007 Acta Mater. 55 6627
[18] Branson J V, Hattar K, Rossi P, Vizkelethy G, Powell C J, HernandezSanchez B and Doyle B L 2011 Nucl. Instrum. Meth. B 269 2326
[19] Townsend P D 2012 Nucl. Instrum. Meth. B 286 35
[20] Huddle J R, Grant P G, Ludington A R and Foster R L 2007 Nucl. Instrum. Meth. B. 261 475
[21] Jiang W, Cheng W, Qiu M, Wu S, Ouyang X, Chen L, Pang P, Ying Mand Liao B 2023 Materials 16 2935
[22] Qiu M L, Yin P, Wang G F, Song J G, Luo C W, Wang T S, Zhao G Q, Lv S S, Zhang F S and Liao B 2020 Chin. Phys. B 29 046106
[23] Wang T S, Wang G F, Qiu M L, Cheng W, Zhang J F and Zhao G Q 2021 J. Lumin. 237 118133
[24] Luo C W, Qiu M L, Wang G F, Wang T S, Zhao G Q and Hua Q S 2020 Acta Phys. Sin. 69 102901 (in Chinese)
[25] Song Y, Qiu M, Zhang J, Wu Y, Zhou M, Lin X and Wang G 2023 Nucl.Instrum. Meth. B 541 392
[26] Qiu M L, Wang G F, Chu Y J, Zheng L, Xu M and Yin P 2017 Acta Phys. Sin. 66 207801 (in Chinese)
[27] Soh C B, Chua S J, Lim H F, Chi D Z, Tripathy S and Liu W 2004 J. Appl. Phys. 96 1341
[28] Reshchikov M A, McNamara J D, Helava H, Usikov A and Makarov Y 2018 Sci. Rep. 8 8091
[29] Liu B, Yuan F, Dierre B, Sekiguchi T, Zhang S, Xu Y and Jiang X 2014ACS Appl. Mater. Interface 6 14159
[30] Reshchikov M A, Demchenko D O, Usikov A, Helava H and Makarov Y 2014 Phys. Rev. B 90 235203
[31] Monemar B, Paskov P P, Bergman J P, Toropov A A, Shubina T V, Malinauskas T and Usui A 2008 Phys. Status. Solidi. (b) 245 1723
[32] Agulló-L opez F, Climent-Font A, Muñoz-Martín Á, Olivares J and Zucchiatti A 2016 Prog. Mater. Sci. 76 1
[33] Reshchikov M A and Korotkov R Y 2001 Phys. Rev. B 64 115205
[34] Crespillo M L, Graham J T, Zhang Y and Weber W J 2016 J. Lumin 172 208
[35] Adachi S 2021 Opt. Mater. 114 111000
[36] Lee K H and Crawford J H 1979 Phys. Rev. B 19 3217
[37] Lewis P M, Keerthana N, Deepak H N, Choudhari K S and Kulkarni S D 2021 Curr. Appl. Phys. 32 71
[1] Co-doped BaFe2As2 Josephson junction fabricated with a focused helium ion beam
Ziwen Chen(陈紫雯), Yan Zhang(张焱), Ping Ma(马平), Zhongtang Xu(徐中堂), Yulong Li(李宇龙), Yue Wang(王越), Jianming Lu(路建明), Yanwei Ma(马衍伟), and Zizhao Gan(甘子钊). Chin. Phys. B, 2024, 33(4): 047405.
[2] Influence of extraction voltage on electron and ion behavior characteristics
Ao Xu(徐翱), Pingping Gan(甘娉娉), Yuanjie Shi(石元杰), and Lei Chen(陈磊). Chin. Phys. B, 2024, 33(4): 045203.
[3] Design of a photonic crystal fiber polarization beam splitter with simple structure and ultra-wide bandwidth
Yun-Peng Wei(魏云鹏), Jin-Hui Yuan(苑金辉), Yu-Wei Qu(屈玉玮), Shi Qiu(邱石), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2023, 32(10): 104210.
[4] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[5] Helium-hydrogen synergistic effects on swelling in in-situ multiple-ion beams irradiated steels
Haocheng Liu(刘昊成), Jia Huang(黄嘉), Liuxuan Cao(曹留煊), Yue Su(苏悦), Zhiying Gao(高智颖), Pengfei Ma(马鹏飞), Songqin Xia(夏松钦), Wei Ge(葛伟), Qingyuan Liu(刘清元), Shuang Zhao(赵双), Yugang Wang(王宇钢), Jinchi Huang(黄金池), Zhehui Zhou(周哲辉), Pengfei Zheng(郑鹏飞), and Chenxu Wang(王晨旭). Chin. Phys. B, 2021, 30(8): 086106.
[6] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[7] In situ luminescence measurement of 6H-SiC at low temperature
Meng-Lin Qiu(仇猛淋), Peng Yin(殷鹏), Guang-Fu Wang(王广甫), Ji-Gao Song(宋纪高), Chang-Wei Luo(罗长维), Ting-Shun Wang(王庭顺), Guo-Qiang Zhao(赵国强), Sha-Sha Lv(吕沙沙), Feng-Shou Zhang(张丰收), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 046106.
[8] Enhanced soft magnetic properties of iron powders through coating MnZn ferrite by one-step sol-gel synthesis
Dong Liu(刘冬), Shanmin Gao(高善民), Rencheng Jin(金仁成), Feng Wang(王峰), Xiaoxiao Chu(初晓晓), Taiping Gao(高太平), Yubao Wang(王玉宝). Chin. Phys. B, 2019, 28(5): 057503.
[9] Practical 2.45-GHz microwave-driven Cs-free H- ion source developed at Peking University
Tao Zhang(张滔), Shi-Xiang Peng(彭士香), Wen-Bin Wu(武文斌), Hai-Tao Ren(任海涛), Jing-Feng Zhang(张景丰), Jia-Mei Wen(温佳美), Teng-Hao Ma(马腾昊), Yao-Xiang Jiang(蒋耀湘), Jiang Sun(孙江), Zhi-Yu Guo(郭之虞), Jia-Er Chen(陈佳洱). Chin. Phys. B, 2018, 27(10): 105208.
[10] Tungsten ion source under double-pulse laser ablation system
Ahmed Asaad I Khalil, Ashraf I Hafez, Mahmoud E Elgohary, Mohamed A Morsy. Chin. Phys. B, 2017, 26(9): 095201.
[11] Utra-thin anisotropic transmitting metasurface for polarization beam splitter application
Wen-Long Guo(郭文龙), Guang-Ming Wang(王光明), Shan-Shan Ding(丁姗姗), Hai-Peng Li(李海鹏), Tong Cai(蔡通). Chin. Phys. B, 2016, 25(8): 084101.
[12] Ultra-thin two-dimensional transmissive anisotropic metasurfaces for polarization filter and beam steering application
Wen-Long Guo(郭文龙), Guang-Ming Wang(王光明), Hai-Peng Li(李海鹏), Kun Zhang(张昆), Tong Cai(蔡通). Chin. Phys. B, 2016, 25(10): 104101.
[13] Pattern transition from nanohoneycomb to nanograss on germanium by gallium ion bombardment
Zheng Xiao-Hu (郑晓虎), Zhang Miao (张苗), Huang An-Ping (黄安平), Xiao Zhi-Song (肖志松), Paul K Chu (朱剑豪), Wang Xi (王曦), Di Zeng-Feng (狄增峰). Chin. Phys. B, 2015, 24(5): 056801.
[14] Designing analysis of the polarization beam splitter in two communication bands based on a gold-filled dual-corephotonic crystal fiber
Fan Zhen-Kai (范振凯), Li Shu-Guang (李曙光), Fan Yu-Qiu (范玉秋), Zhang Wan (张婉), An Guo-Wen (安国文), Bao Ya-Jie (鲍亚杰). Chin. Phys. B, 2014, 23(9): 094212.
[15] Li-N dual-doped ZnO thin films prepared by an ion beam enhanced deposition method
Xie Jian-Sheng (谢建生), Chen Qiang. Chin. Phys. B, 2014, 23(9): 097703.
No Suggested Reading articles found!