PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Error field penetration in J-TEXT tokamak based on two-fluid drift-MHD model |
Wen Wang(王文), Tao Xu(徐涛)†, Yi Zhang(张仪), and the J-TEXT team |
State Key Laboratory of Advanced Electromagnetic Technology, International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces. We have studied the plasma responses using Fitzpatrick's improved two-fluid model and program LAYER. We calculated the error field penetration threshold for J-TEXT. In addition, we find that the island width increases slightly as the error field amplitude increases when the error field amplitude is below the critical penetration value. However, the island width suddenly jumps to a large value because the shielding effect of the plasma against the error field disappears after the penetration. By scanning the natural mode frequency, we find that the shielding effect of the plasma decreases as the natural mode frequency decreases. Finally, we obtain the m/n=2/1 penetration threshold scaling on density and temperature.
|
Received: 28 November 2023
Revised: 27 December 2023
Accepted manuscript online: 15 January 2024
|
PACS:
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
52.65.-y
|
(Plasma simulation)
|
|
52.35.Py
|
(Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))
|
|
52.30.Cv
|
(Magnetohydrodynamics (including electron magnetohydrodynamics))
|
|
Fund: The authors are grateful for help of J-TEXT team. The authors are grateful to Professor R. Fitzpatrick for helpful suggestions and the support of program LAYER. Project supported by the National Natural Science Foundation of China (Grant No. 51821005). |
Corresponding Authors:
Tao Xu
E-mail: xutao@hust.edu.cn
|
Cite this article:
Wen Wang(王文), Tao Xu(徐涛), Yi Zhang(张仪), and the J-TEXT team Error field penetration in J-TEXT tokamak based on two-fluid drift-MHD model 2024 Chin. Phys. B 33 045202
|
[1] Sweet P 1958 Il Nuovo Cimento 8 188 [2] Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459 [3] Parker E N 1963 Astrophys. J. Suppl. Ser. 8 177 [4] Hender T, Fitzpatrick R, Morris A, Carolan P, Durst R, Edlington T, Ferreira J, Fielding S, Haynes P and Hugill J 1992 Nucl. Fusion 32 2091 [5] Scoville J, La Haye R, Kellman A, Osborne T, Stambaugh R, Strait E and Taylor T 1991 Nucl. Fusion 31 875 [6] Buttery R, De'Benedetti M, Gates D A, Gribov Y, Hender T, La Haye R, Leahy P, Leuer J, Morris A and Santagiustina A 1999 Nucl. Fusion 39 1827 [7] Yan W, Chen Z Y, Huang D W, Hu Q M, Shi Y J, Ding Y H, Cheng Z F, Yang Z J, Pan X M, Lee S G, Tong R H, Wei Y N, Dong Y B and the J-TEXT Team 2018 Plasma Phys. Controlled Fusion 60 035007 [8] Wang N, Ding Y, Rao B and Li D 2022 Rev. Mod. Plasma Phys. 6 26 [9] Wang N, Rao B, Hu Q, Ding Y, Chen Z, Gao L, Jin W, Yi B, Zeng W and Li Q 2014 Nucl. Fusion 54 064014 [10] Huang Z, Liang Y, Hu Q, Wang N, Li D, Zhang X, Rao B, Chen Z, Zhou S, Zhang Q, Shen C, He Y, Ding Y and the J-TEXT Team 2020 Nucl. Fusion 60 064003 [11] Wang N, Liang Y, Ding Y, Chen Z, Chen Z, Yang Z, Xia D, Zheng W, Yan W and Li D 2022 Nucl. Fusion 62 042016 [12] Fitzpatrick R 2012 Plasma Phys. Controlled Fusion 54 094002 [13] Wolf R, Biel W, De Bock M, Finken K, Günter S, Hogeweij G, Jachmich S, Jakubowski M, Jaspers R and Krämer-Flecken A 2005 Nucl. Fusion 45 1700 [14] Howell D, Hender T and Cunningham G 2007 Nucl. Fusion 47 1336 [15] Park J K, Menard J E, Gerhardt S P, Buttery R J, Sabbagh S A, Bell R E and LeBlanc B P 2012 Nucl. Fusion 52 023004 [16] Wang H H, Sun Y W, Shi T H, Zang Q, Liu Y Q, Yang X, Gu S, He K Y, Gu X and Qian J P 2018 Nucl. Fusion 58 056024 [17] Fitzpatrick R 2022 Phys. Plasmas 29 032507 [18] Fitzpatrick R 1998 Phys. Plasmas 5 3325 [19] Cole A and Fitzpatrick R 2006 Phys. Plasmas 13 032503 [20] Waelbroeck F 2003 Phys. Plasmas 10 4040 [21] Waelbroeck F, Joseph I, Nardon E, Bécoulet M and Fitzpatrick R 2012 Nucl. Fusion 52 074004 [22] Militello F and Waelbroeck F 2009 Nucl. Fusion 49 065018 [23] Hazeltine R, Kotschenreuther M and Morrison P 1985 Phys. Fluids 28 2466 [24] Fitzpatrick R https://github.com/rfitzp [25] Park J K 2022 Phys. Plasmas 29 072506 [26] Fitzpatrick R 1993 Nucl. Fusion 33 1049 [27] Fitzpatrick R 2023 Phys. Plasmas 30 092512 [28] Fitzpatrick R 2023 Tearing mode dynamics in tokamak plasmas (IOP Publishing) pp. 177——179 [29] Wesson J 1978 Nucl. Fusion 18 87 [30] Wang H, Wang Z, Ding Y and Rao B 2015 Plasma Sci. Technol. 17 539 [31] De Bock M, Classen I, Busch C, Jaspers R, Koslowski H, Unterberg B and the TEXTOR Team 2008 Nucl. Fusion 48 015007 [32] Ye C, Sun Y W, Wang H H, Liu Y Q, Shi T H, Li Y Y, Zang Q, Lu D A, Jia T Q and Ma Q 2023 Nucl. Fusion 64 016005 [33] Koslowski H, Liang Y, Krämer-Flecken A, Löwenbrück K, Von Hellermann M, Westerhof E, Wolf R, Zimmermann O and the TEXTOR Team 2006 Nucl. Fusion 46 L1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|