Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 035201    DOI: 10.1088/1674-1056/ad1486
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Wave field structure and power coupling features of blue-core helicon plasma driven by various antenna geometries and frequencies

Chao Wang(王超)1,3, Jia Liu(刘佳)2, Lei Chang(苌磊)1,†, Ling-Feng Lu(卢凌峰)3, Shi-Jie Zhang(张世杰)1, and Fan-Tao Zhou(周帆涛)1
1 State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China;
2 Shanghai Institute of Space Propulsion, Shanghai 201112, China;
3 Southwestern Institute of Physics, Chengdu 610041, China
Abstract  This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies. It is found that compared to non-blue-core mode, for blue-core mode, the wave can propagate in the core region, and it decays sharply outside the core. The power absorption is lower and steeper in radius for blue-core mode. Regarding the effects of antenna geometry for blue-core mode, it shows that half helix antenna yields the strongest wave field and power absorption, while loop antenna yields the lowest. Moreover, near axis, for antennas with m = +1, the wave field increases with axial distance. In the core region, the wave number approaches to a saturation value at much lower frequency for non-blue-core mode compared to blue-core mode. The total loading resistance is much lower for blue-core mode. These findings are valuable to understanding the physics of blue-core helicon discharge and optimizing the experimental performance of blue-core helicon plasma sources for applications such as space propulsion and material treatment.
Keywords:  helicon plasma      helicon wave      helicon discharge      radio frequency plasma source  
Received:  01 November 2023      Revised:  05 December 2023      Accepted manuscript online:  12 December 2023
PACS:  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.70.Ds (Electric and magnetic measurements)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 92271113), the Fundamental Research Funds for the Central Universities (Grant No. 2022CDJQY-003), Chongqing Entrepreneurship and Innovation Support Program for Overseas Returnees (Grant No. CX2022004), and the Fund from Shanghai Engineering Research Center of Space Engine (Grant No. 17DZ2280800).
Corresponding Authors:  Lei Chang     E-mail:  leichang@cqu.edu.cn

Cite this article: 

Chao Wang(王超), Jia Liu(刘佳), Lei Chang(苌磊), Ling-Feng Lu(卢凌峰), Shi-Jie Zhang(张世杰), and Fan-Tao Zhou(周帆涛) Wave field structure and power coupling features of blue-core helicon plasma driven by various antenna geometries and frequencies 2024 Chin. Phys. B 33 035201

[1] Borg G and Boswell R 1998 Phys. Plasmas 5 564
[2] Shinohara S, Nishida H, Tanikawa T, Hada T, Funaki I and Shamrai K P 2014 IEEE Trans. Plasma Sci. 42 1245
[3] Perry A J, Vender D and Boswell R W 1991 J. Vac. Sci. Technol. B 9 310
[4] Chabert P, Proust N, Perrin J and Boswell R W 2000 Appl. Phys. Lett. 76 2310
[5] Gallo A, Fedorczak N, Elmore S, Maurizio R, Reimerdes H, Theiler C, Tsui C K, Boedo J A, Faitsch M, Bufferand H, Ciraolo G, Galassi D, Ghendrih P, Valentinuzzi M, Tamain P, Team E M and Team T 2018 Plasma Phys. Control. Fusion 60 014007
[6] Boswell R W 1984 Plasma Phys. Control. Fusion 26 1147
[7] Chen F F 1992 J. Vac. Sci. Technol. A 10 1389
[8] Ellingboe A R and Boswell R W 1996 Phys. Plasmas 3 2797
[9] Franck C M, Grulke O and Klinger T 2003 Phys. Plasmas 10 323
[10] Franck C M, Grulke O, Stark A, Klinger T, Scime E E and Bonhomme G 2005 Plasma Sources Sci. Technol. 14 226
[11] Kaeppelin V, Carrere M and Faure J B 2001 Rev. Sci. Instrum. 72 4377
[12] Rayner J P and Cheetham A D 1999 Plasma Sources Sci. Technol. 8 79
[13] Shinohara S and Yonekura K 2000 Plasma Phys. Control. Fusion 42 41
[14] Shoji T, Sakawa Y, Nakazawa S, Kadota K and Sato T 1993 Plasma Sources Sci. Technol. 2 5
[15] Celik M 2011 Spectrochim. Acta B 66 149
[16] Scime E E, Keesee A M and Boswell R W 2008 Phys. Plasmas 15 058301
[17] Huang T Y, Jin C G, Yu Y W, Hu J S, Yang J H, Ding F, Chen X H, Ji P Y, Qian J W, Huang J J, Yu B and Wu X M 2020 IEEE Trans. Plasma Sci. 48 2878
[18] Zhao G, Wang H H, Si X L, Ouyang J T, Chen Q and Tan C 2017 Phys. Plasmas 24 123507
[19] Zhang T, Cui R, Zhu W, Yuan Q, Ouyang J, Jiang K, Zhang H, Wang C and Chen Q 2021 Phys. Plasmas 28 073505
[20] Lu Z, Xu G, Yip C S, Chen D, Wu X, Zhang W, Hu G, Jin C and Jiang D 2022 Plasma Sci. Technol. 24 095403
[21] Chang L, Caneses J F and Thakur S C 2022 Front. Phys. 10 1009563
[22] Arnush D 2000 Phys. Plasmas 7 3042
[23] Arnush D and Chen F F 1998 Phys. Plasmas 5 1239
[24] Chen F F and Arnush D 1997 Phys. Plasmas 4 3411
[25] Stix T H 1962 The Theory of Plasma Waves (New York: McGraw-Hill) p. 10
[26] Thakur S C, Brandt C, Cui L, Gosselin J J and Tynan G R 2015 IEEE Trans. Plasma Sci. 43 2754
[27] Afsharmanesh M and Habibi M 2017 Plasma Sci. Technol. 19 105403
[28] Chen F F 2015 Plasma Sources Sci. Technol. 24 014001
[29] Chang L, Hu X Y, Gao L, Chen W, Wu X M, Sun X F, Hu N and Huang C X 2018 AIP Adv. 8 045016
[30] Arefiev A V and Breizman B N 2004 Phys. Plasmas 11 2942
[31] Batishchev O V 2009 IEEE Trans. Plasma Sci. 37 1563
[32] Boswell R W 1970 Phys. Lett. A 33 457
[33] Charles C 2009 J. Phys. D: Appl. Phys. 42 163001
[34] Chen F F 1996 Phys. Plasmas 3 1783
[35] Hanna J and Watts C 2001 Phys. Plasmas 8 4251
[36] Loewenhardt P, Blackwell B, Boswell R, Conway G and Hamberger S 1991 Phys. Rev. Lett. 67 2792
[37] Mckenzie D R, Mcfall W D, Sainty W G, Yin Y and Boswell R W 1996 Surf. Coat. Technol. 82 326
[38] Petri R, Henry D and Sadeghi N 1992 J. Appl. Phys. 72 2644
[39] Petrzilka V and Tataronis J 1994 Plasma Phys. Control. Fusion 36 1027
[40] Zhu P and Boswell R 1989 Phys. Rev. Lett. 63 2805
[1] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[2] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[3] Modulation of absorption manner in helicon discharges by changing profile of low axial magnetic field
Gao Zhao(赵高), Yu Wang(王宇), Chen Niu(牛晨), Zhong-Wei Liu(刘忠伟), Jiting Ouyang(欧阳吉庭), Qiang Chen(陈强). Chin. Phys. B, 2017, 26(10): 105201.
[4] A radial non-uniform helicon equilibrium discharge model
Cheng Yu-Guo (成玉国), Cheng Mou-Sen (程谋森), Wang Mo-Ge (王墨戈), Li Xiao-Kang (李小康). Chin. Phys. B, 2014, 23(10): 105202.
No Suggested Reading articles found!