Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 045205    DOI: 10.1088/1674-1056/ad1821
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Plasma potential measurements using an emissive probe made of oxide cathode

Jian-Quan Li(李建泉)1,2, Hai-Jie Ma(马海杰)1,2, and Wen-Qi Lu(陆文琪)3,†
1 Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China;
2 Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, China;
3 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  A novel emissive probe consisting of an oxide cathode coating is developed to achieve a low operating temperature and long service life. The properties of the novel emissive probe are investigated in detail, in comparison with a traditional tungsten emissive probe, including the operating temperature, the electron emission capability and the plasma potential measurement. Studies of the operating temperature and electron emission capability show that the tungsten emissive probe usually works at a temperature of 1800 K—2200 K while the oxide cathode emissive probe can function at about 1200 K—1400 K. In addition, plasma potential measurements using the oxide cathode emissive probe with different techniques have been accomplished in microwave electron cyclotron resonance plasmas with different discharge powers. It is found that a reliable plasma potential can be obtained using the improved inflection point method and the hot probe with zero emission limit method, while the floating point method is invalid for the oxide cathode emissive probe.
Keywords:  emissive probe      oxide cathode      plasma potential      filament temperature  
Received:  27 October 2023      Revised:  11 December 2023      Accepted manuscript online:  22 December 2023
PACS:  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.70.Ds (Electric and magnetic measurements)  
  79.40.+z (Thermionic emission)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11905076) and S&T Program of Hebei (Grant No. SZX2020034).
Corresponding Authors:  Wen-Qi Lu     E-mail:  luwenqi@dlut.edu.cn

Cite this article: 

Jian-Quan Li(李建泉), Hai-Jie Ma(马海杰), and Wen-Qi Lu(陆文琪) Plasma potential measurements using an emissive probe made of oxide cathode 2024 Chin. Phys. B 33 045205

[1] Oksuz L and Hershkowitz N 2002 Phys. Rev. Lett. 89 145001
[2] Sheehan J P and Hershkowitz N 2011 Plasma Sources Sci. Technol. 20 063001
[3] Li J Q, Xu J, Bai Y J, Lu W Q and Wang Y N 2016 J. Vac. Sci. Technol. A 34 061304
[4] Li J Q, Lu W Q, Xu J, Gao F and Wang Y N 2018 Vacuum 155 566
[5] Li J Q, Lu W Q, Xu J and Gao F 2019 Plasma Phys. Contr. Fusion 61 105005
[6] Schrittwieser R, Ionita C, Balan P, Gstrein R, Grulke O, Windisch T, Brandt C, Klinger T, Madani R, Amarandei G and Sarma A K 2008 Rev. Sci. Instrum. 79 083508
[7] Kella V P, Mehta P, Sarma A, Ghosh J and Chattopadhyay P K 2016 Rev. Sci. Instrum. 87 043508
[8] Ye M Y and Takamura S 2000 Phys. Plasma. 7 3457
[9] Hadley C P 1953 J. Appl. Phys. 24 49
[10] Fan J K, Peng Y, Xu J Q, Xu H Y, Yang D Q, Li X P and Zhou Q 2019 Vacuum 164 278
[11] Li J Q, Li S H and Liu P 2023 Vacuum 210 111837
[12] Lafferty J M and Kingdon K H 1946 J. Appl. Phys. 17 894
[13] Horsting C W 1947 J. Appl. Phys. 18 95
[14] Fan H Y 1949 J. Appl. Phys. 20 682
[15] Schneider P 1958 J. Chem. Phys. 28 675
[16] Murray R G and Collier R J 1977 Rev. Sci. Instrum. 48 870
[17] Kemp R F and Sellen J M 1966 Rev. Sci. Instrum. 37 455
[18] Yamada H and Murphree D L 1971 Phys. Fluids 14 1120
[19] Sheehan J P, Raitses Y, Hershkowitz N, Kaganovich I and Fisch N J 2011 Phys. Plasma 18 073501
[20] Li J Q, Zhang Q H, Xing Z Y and Lu W Q 2022 J. Vac. Sci. Technol. A 40 033001
[21] Davies D E and Hopkins B J 1959 Br. J. Appl. Phys. 10 498
[22] Fang H K, Oyama K I and Chen A B 2017 Plasma Sources Sci. Technol. 26 115010
[23] Li J Q, Lu W Q, Xu J, Gao F and Wang Y N 2017 Rev. Sci. Instrum. 88 115106
[24] Li J Q, Lu W Q, Xu J, Gao F and Wang Y N 2018 Plasma Sci. Technol. 20 024002
[25] Lu W Q, Jiang X Z, Liu Y X, Yang S, Zhang Q Z, Li X S, Xu Y, Zhu A M and Wang Y N 2013 Plasma Sci. Technol. 15 511
[26] Li J Q, Xie X Y, Li S H and Zhang Q H 2022 Vacuum 200 111013
[27] LoPresto M C and Hagoort N 2011 Phys. Teach. 49 113
[28] Carlá M 2013 Am. J. Phys. 81 512
[29] Bramson M A 1968 Infrared Radiation:A Handbook for Applications, Optical Physics & Engineering, New York Plenum Press, New York, 1968, p. 536
[30] Li S H and Li J Q 2021 Vacuum 192 110496
[1] Experimental studies of plasma sheath near meshes of different transmissivity
Li Yi-Ren(李毅人), Ma Jin-Xiu(马锦秀), Zheng Yao-Bang(郑尧邦), and Zhang Wen-Gui(张文贵). Chin. Phys. B, 2010, 19(8): 085201.
[2] Improvements on the third generation of electron momentum spectrometer
Ning Chuan-Gang(宁传刚), Zhang Shu-Feng(张书锋), Deng Jing-Kang(邓景康), Liu Kun(刘昆), Huang Yan-Ru(黄艳茹), and Luo Zhi-Hong(罗志弘). Chin. Phys. B, 2008, 17(5): 1729-1737.
No Suggested Reading articles found!