Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 035204    DOI: 10.1088/1674-1056/ad16d4
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical studies for plasmas of a linear plasma device HIT-PSI with geometry modified SOLPS-ITER

Min Wang(王敏)1, Qiuyue Nie(聂秋月)2,3,†, Tao Huang(黄韬)1, Xiaogang Wang(王晓钢)1,3, and Yanjie Zhang(张彦杰)4
1 School of Physics, Harbin Institute of Technology, Harbin 150001, China;
2 School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China;
3 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China;
4 MOE (Ministry of Education) Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, School of Physics, Dalian Institute of Technology, Dalian 116024, China
Abstract  The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials. In this study, the geometry-modified SOLPS-ITER program is employed to examine the effects of the magnetic field strength and neutral pressure in the device on the heat flux experienced by the target plate of the HIT-PSI device. The findings of the numerical simulation indicate a positive correlation between the magnetic field strength and the heat flux density. Conversely, there is a negative correlation observed between the heat flux density and the neutral pressure. When the magnetic field strength at the axis exceeds 1 tesla and the neutral pressure falls below 10 Pa, the HIT-PSI has the capability to attain a heat flux of 10 MW·m-2 at the target plate. The simulation results offer a valuable point of reference for subsequent experiments at HIT-PSI.
Keywords:  HIT-PSI      heat flux      linear plasma      SOLPS-ITER device  
Received:  05 November 2023      Revised:  13 December 2023      Accepted manuscript online:  19 December 2023
PACS:  52.55.Dy (General theory and basic studies of plasma lifetime, particle and heat loss, energy balance, field structure, etc.)  
  52.65.-y (Plasma simulation)  
  28.52.-s (Fusion reactors)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFE0303105), the Fundamental Research Funds for the Central Universities (Grant No. 2022FRFK060021), and the National MCF Energy Research and Development Program (Grant No. 2019YFE03080300).
Corresponding Authors:  Qiuyue Nie     E-mail:  nieqiuyue@hit.edu.cn

Cite this article: 

Min Wang(王敏), Qiuyue Nie(聂秋月), Tao Huang(黄韬), Xiaogang Wang(王晓钢), and Yanjie Zhang(张彦杰) Numerical studies for plasmas of a linear plasma device HIT-PSI with geometry modified SOLPS-ITER 2024 Chin. Phys. B 33 035204

[1] Wan Y, Li J, Liu Y, Wang X, Chan V, Chen C, Duan X, Fu P, Gao X and Feng K 2017 Nucl. Fusion 57 102009
[2] van Eck H J N, Akkermans G R A, Alonso van der Westen S, Aussems D U B, van Berkel M, Brons S, Classen I G J, van der Meiden H J, Morgan T W, van de Pol M J, Scholten J, Vernimmen J W M, Vos E G P and de Baar M R 2019 Fusion Eng. Des. 142 26
[3] Chandra R, De Blank H J, Diomede P, Van Eck H J N, Van Der Meiden H J, Morgan T W, Vernimmen J W M and Westerhof E 2021 Plasma Phys. Control. Fusion 63 095006
[4] Chandra R, de Blank H J, Diomede P and Westerhof E 2021 Plasma Phys. Control. Fusion 64 015001
[5] Owen L W, Caneses J F, Canik J, Lore J D, Corr C, Blackwell B, Bonnin X and Rapp J 2017 Plasma Sources Sci. Technol. 26 055005
[6] Blackwell B D, Caneses J F, Samuell C M, Wach J, Howard J and Corr C 2012 Plasma Sources Sci. Technol. 21 055033
[7] Sala M, Tonello E, Uccello A, Bonnin X, Ricci D, Dellasega D, Granucci G and Passoni M 2020 Plasma Phys. Control. Fusion 62 055005
[8] Tonello E, Formenti A, Alberti G, Uccello A and Passoni M 2021 Nucl. Fusion 61 066036
[9] Beers C J, Jaramillo C, Reid N C, Schamis H, Allain J P, Caughman J B O, Meitner S J, Rapp J and Zinkle S J 2021 Rev. Sci. Instrum. 92 045108
[10] Rapp J, Owen L W, Canik J, Lore J D, Caneses J F, Kafle N, Ray H and Showers M 2019 Phys. Plasmas 26 042513
[11] Sun C, Sang C, Ye H, Wang Q, Liu H, Wang Z, Wang H, Ke R, Wang Y and Zhang Y 2021 Fusion Eng. Des. 162 112074
[12] Zhang Y, Sang C, Sun C, Wang M, Wang Y, Wang Q and Wang D 2022 Nucl. Mater. Energy 33 101280
[13] Nakashima Y, Takeda H, Ichimura K, Hosoi K, Oki K, Sakamoto M, Hirata M, Ichimura M, Ikezoe R and Imai T 2015 J. Nucl. Mater. 463 537
[14] Tanaka H, Ezumi N, Sugiyama T, Gamo H, Shigematsu N, Yoshikawa M, Kohagura J, Hirata M, Togo S and Ohno N 2023 Phys. Plasmas 30 032501
[15] Huang T, Nie Q, Wang M, Xu F and Wang X 2022 Appl. Sci. 12 10501
[16] Bonnin X, Dekeyser W, Pitts R, Coster D, Voskoboynikov S and Wiesen S 2016 Plasma Fusion Res. 11 1403102
[17] Ohno N 2017 Plasma Phys. Control. Fusion 59 034007
[1] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
[2] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[3] Erratum to “Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux”
Swati Mukhopadhyay and Iswar Chandra Mandal. Chin. Phys. B, 2022, 31(5): 059902.
[4] Calculation of radiative heat flux on irregular boundaries in participating media
Yu-Jia Sun(孙玉佳) and Shu Zheng(郑树). Chin. Phys. B, 2020, 29(12): 124401.
[5] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[6] Preliminary computation of the gap eigenmode of shear Alfvén waves on the LAPD
Lei Chang(苌磊). Chin. Phys. B, 2018, 27(12): 125201.
[7] Macro-performance of multilayered thermoelectric medium
Kun Song(宋坤), Hao-Peng Song(宋豪鹏), Cun-Fa Gao(高存法). Chin. Phys. B, 2017, 26(12): 127307.
[8] Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid
F M Abbasi, M Mustafa, S A Shehzad, M S Alhuthali, T Hayat. Chin. Phys. B, 2016, 25(1): 014701.
[9] Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux
Swati Mukhopadhyay, Iswar Chandra Mandal. Chin. Phys. B, 2014, 23(4): 044702.
[10] MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation
Swati Mukhopadhyay, Iswar Ch, ra Moindal, Tasawar Hayat. Chin. Phys. B, 2014, 23(10): 104701.
[11] Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity
Ahmed M. Megahed. Chin. Phys. B, 2013, 22(9): 094701.
[12] Heat transfer in boundary layer stagnation-point flow towards a shrinking sheet with non-uniform heat flux
Krishnendu Bhattacharyya. Chin. Phys. B, 2013, 22(7): 074705.
[13] Reconstruction of heat flux profile on the HL-2A divertor plate with a three-dimensional analysis model
Gao Jin-Ming (高金明), Li Wei (李伟), Xia Zhi-Wei (夏志伟), Pan Yu-Dong (潘宇东), Lu Jie (卢杰), Yi Ping (易萍), Liu Yi (刘仪). Chin. Phys. B, 2013, 22(1): 015202.
No Suggested Reading articles found!