Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 055204    DOI: 10.1088/1674-1056/ad2d56
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift

Ming-Xing Wu1, Kai Xie1,†, Yan Liu1, Han Xu1, Bao Zhang1, and De-Yang Tian2
1 School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China;
2 Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract  A non-contact low-frequency (LF) method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed. This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic field through the plasma to directly measure the ratio of the plasma loop average electron density to collision frequency. An equivalent circuit model is used to analyze the relationship of the phase shift of the magnetic field component of LF electromagnetic waves with the plasma electron density and collision frequency. The applicable range of the LF method on a given plasma scale is analyzed. The upper diagnostic limit for the ratio of the electron density (unit: m$^{-3}$) to collision frequency (unit: Hz) exceeds $1 \times 10^{11}$, enabling an electron density to exceed $1 \times 10^{20}$ m$^{-3}$ and a collision frequency to be less than 1 GHz. In this work, the feasibility of using the LF phase shift to implement the plasma diagnosis is also assessed. Diagnosis experiments on shock tube equipment are conducted by using both the electrostatic probe method and LF method. By comparing the diagnostic results of the two methods, the inversion results are relatively consistent with each other, thereby preliminarily verifying the feasibility of the LF method. The ratio of the electron density to the collision frequency has a relatively uniform distribution during the plasma stabilization. The LF diagnostic path is a loop around the model, which is suitable for diagnosing the plasma that surrounds the model. Finally, the causes of diagnostic discrepancy between the two methods are analyzed. The proposed method provides a new avenue for diagnosing high-density enveloping plasma.
Keywords:  low-frequency alternating magnetic field phase shift      shock-tube plasma diagnosis      electron density      collision frequency  
Received:  08 December 2023      Revised:  07 February 2024      Accepted manuscript online: 
PACS:  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.70.Ds (Electric and magnetic measurements)  
  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
  07.55.Nk (Magnetic shielding in instruments)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52107162 and 12202479), the Science and Technology Projects of Shaanxi Province, China (Grant Nos. 2022CGBX-12 and 2022KXJ-57), and the Science and Technology Projects of Xi’an City, China (Grant Nos. 23KGDW0023-2022 and 23GXFW0011).
Corresponding Authors:  Kai Xie,E-mail:kaixie@mail.xidian.edu.cn     E-mail:  kaixie@mail.xidian.edu.cn

Cite this article: 

Ming-Xing Wu, Kai Xie, Yan Liu, Han Xu, Bao Zhang, and De-Yang Tian Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift 2024 Chin. Phys. B 33 055204

[1] Scharfman W E 1965 The use of Langmuir probes to determine the electron density surrounding re-entry vehicles (Washington DC: NASA)
[2] Guo S S, Xie K, Sun B, Xi R Y and Liu Y 2021 Plasma Sci. Technol. 23 075401
[3] Sakthi B G and Aravind R S 2023 Int. J. Impact. Eng. 172 104406
[4] Lyu X T, Jiang C X, Feng W and Ge N 2017 IEEE Trans. Plasma Sci. 45 2050
[5] Sun Q, Cui W, Li Y H, Cheng B Q, Jin D and Li J 2014 Chin. Phys. B 23 075120
[6] Man L, Deng H C, Wu Y, Yu X L and Xiao Z H 2022 Acta Phys. Sin. 71 035203 (in Chinese)
[7] Xie K 2014 Study On Plasma Sheath Reproducing Technology and Related Issues in EM-Wave Propagation Experiment, Ph.D Thesis (Xi’an: Xidian University) (in Chinese)
[8] Liu D L, Li X P, Xie K and Liu Z W 2015 Phys. Plasmas 22 102106
[9] Xie K, Guo S S, Sun B, Quan L and Liu Y 2019 Phys. Plasmas 26 073509
[10] Sun B, Xie K, Liu Y, Zhang Y J, Guo S S and Ma P 2022 IEEE Trans. Plasma Sci. 50 102106
[11] Xie K, Sun B, Guo S S, Quan L and Liu Y 2019 Rev. Sci. Instrum. 90 073503
[12] Guo S S, Xie K, Sun B and Liu S W 2020 Plasma Sci. Technol. 22 125301
[13] Guo S S 2021 An Approach to Plasma-SpatiotemporalElectromagnetic-Regulation-Based Enhanced Magnetic Window Methods and Its Experimental Researches, Ph.D Thesis (Xi'an: Xidian University) (in Chinese)
[14] Liu D L 2015 Study on the Low-frequency EM Wave Transmission Characteristics under Plasma sheath and Blackout Mitigation by E×B, Ph.D Thesis (Xi’an: Xidian University) (in Chinese)
[15] lvaro S V, Federico B, Victor D, Julien J, Denis P, Eduardo A and Mario M 2023 Plasma Sources Sci. Technol. 32 014002
[16] Yu P C, Liu Y, Liu X Q and Lei J H 2022 Phys. Plasma 29 093508
[17] Ming Z J, Lan T, Li H, Xie J L, Liu A D and Liu W D 2015 Acta Phys. Sin. 64 115201 (in Chinese)
[18] Lan H, Shi T H, Yan N, et al. 2023 Plasma Sources Sci. Technol. 25 075105
[19] Banks P M and Kockarts G 1973 Aeronomy: Part A (New York: Academic)
[20] Wu M X, Tian D Y, Tang P, Tian J, He Z Y and Ma P 2022 Acta Phys. Sin. 71 115202 (in Chinese)
[21] Zhao C W, Li X P, Liu Y M, Liu D L, Sun C, Ma G L, Tian L S and Bao W M 2022 Plasma Sources Sci. Technol. 31 015007
[22] Tian J, Ma P, Chen B, Hu H Q, Zeng B, Li L T and Tang P 2022 Plasma Sci. Technol. 24 045505
[23] Ma G L, Liu Y M, Zhao C W, Sun C and Bao W M 2022 Plasma Sci. Technol. 24 075501
[24] Varavin M, Varavin A, Naydenkova D, Zajac J, Zacek F, Nanobashvili S, Panek R, Weinzettl V, Bilkova P, Kovarik K, Jaulmes F, Farnik M, Imrisek M and Bogar O 2019 Fusion Eng. Des. 146 1858
[25] Ginzburg (translated by Qian S X) 1978 Propagation of electromagnetic wave in plasma (Beijing: Science Press) pp. 5–9 (in Chinese)
[26] Yang S Y 2006 Electromagnetic Shielding Theory and Practice, (BeiJing: National Defense Industry Press) pp. 136–138 (in Chinese)
[27] Wheeler H A 1958 Proc. IRE 46 1595
[28] Miller D A and Bridges J E 1968 IEEE Trans. Electromagn. Compat. 10 52
[1] Numerical simulation study of ionization characteristics of argon dielectric barrier discharge
Guiming Liu(刘桂铭), Lei Chen(陈雷), Zhibo Zhao(赵智博), and Peng Song(宋鹏). Chin. Phys. B, 2023, 32(12): 125205.
[2] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[3] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[4] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[5] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[6] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[7] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[8] Interaction of supersonic molecular beam with low-temperature plasma
Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋). Chin. Phys. B, 2020, 29(6): 065208.
[9] Temporal and spatial evolution of air-spark switch plasmainvestigated by the Mach-Zehnder interferometer
Jie Huang(黄杰), Lin Yang(杨林), Hongchao Zhang(张宏超), Lei Chen(陈磊), Xianying Wu(吴先映). Chin. Phys. B, 2019, 28(5): 055202.
[10] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[11] Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation
Man-Hong Zhang(张满红). Chin. Phys. B, 2016, 25(5): 053102.
[12] First-principles calculations of structural and electronic properties of TlxGa1-xAs alloys
G. Bilgeç Akyüz, A. Y. Tunali, S. E. Gulebaglan, N. B. Yurdasan. Chin. Phys. B, 2016, 25(2): 027101.
[13] Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations
Yuan Ye (袁野), Xu Run (徐闰), Xu Hai-Tao (徐海涛), Hong Feng (洪峰), Xu Fei (徐飞), Wang Lin-Jun (王林军). Chin. Phys. B, 2015, 24(11): 116302.
[14] Characteristics of dual-frequency capacitively coupled SF6/O2 plasma and plasma texturing of multi-crystalline silicon
Xu Dong-Sheng (徐东升), Zou Shuai (邹帅), Xin Yu (辛煜), Su Xiao-Dong (苏晓东), Wang Xu-Sheng (王栩生). Chin. Phys. B, 2014, 23(6): 065201.
[15] First-principles study of orbital ordering in cubic fluoride KCrF3
Ming Xing (明星), Xiong Liang-Bin (熊良斌), Xu Huo-Xi (徐火希), Du Fei (杜菲), Wang Chun-Zhong (王春忠), Chen Gang (陈岗). Chin. Phys. B, 2014, 23(3): 037401.
No Suggested Reading articles found!