Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 045206    DOI: 10.1088/1674-1056/ad24db
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Probing the peripheral self-generated magnetic field distribution in laser-plasma magnetic reconnection with Martin—Puplett interferometer polarimeter

Ya-Peng Zhang(张雅芃)1,2, Jia-Wen Yao(姚嘉文)1,2, Zheng-Dong Liu(刘正东)1,2, Zuo-Lin Ma(马作霖)1,2, and Jia-Yong Zhong(仲佳勇)1,2,†
1 Department of Astronomy, Beijing Normal University, Beijing 100875, China;
2 Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University, Beijing 102206, China
Abstract  Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena. We use the Martin—Puplett interferometer (MPI) polarimeter to probe the peripheral magnetic fields generated in the common magnetic reconnection configuration, two separated coplanar plane targets, in laser-target interaction. We introduce a new method that can obtain polarization information from the interference pattern instead of the sinusoidal function fitting of the intensity. A bidirectional magnetic field is observed from the side view, which is consistent with the magneto-hydro-dynamical (MHD) simulation results of self-generated magnetic field reconnection. We find that the cancellation of reverse magnetic fields after averaging and integration along the observing direction could reduce the magnetic field strength by one to two orders of magnitude. It indicates that imaging resolution can significantly affect the accuracy of measured magnetic field strength.
Keywords:  laser-plasma experiment      polarimeter      self-generated magnetic field      magnetic reconnection  
Received:  24 December 2023      Revised:  30 January 2024      Accepted manuscript online:  01 February 2024
PACS:  52.38.Fz (Laser-induced magnetic fields in plasmas)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
  52.35.Vd (Magnetic reconnection)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1603200 and 2022YFA1603203), the National Natural Science Foundation of China (Grant Nos. 12075030, 12135001, 12175018, and 12325305), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25030700), the Research Grants Council of Hong (Grant No. 14307118), and the Youth Interdisciplinary Team (Grant No. JCTD-2022-05).
Corresponding Authors:  Jia-Yong Zhong     E-mail:  jyzhong@bnu.edu.cn

Cite this article: 

Ya-Peng Zhang(张雅芃), Jia-Wen Yao(姚嘉文), Zheng-Dong Liu(刘正东), Zuo-Lin Ma(马作霖), and Jia-Yong Zhong(仲佳勇) Probing the peripheral self-generated magnetic field distribution in laser-plasma magnetic reconnection with Martin—Puplett interferometer polarimeter 2024 Chin. Phys. B 33 045206

[1] Stamper J A 1991 Laser Part. Beams 9 841
[2] Lindl J D, Amendt P, Berger R L, et al. 2004 Phys. Plasmas 11 339
[3] Schurtz G, Gary S, Hulin S, et al. 2007 Phys. Rev. Lett. 98 095002
[4] Sweet P A 1958 Int. Astron. Union Symp. 6 123
[5] Parker E N 1957 J. Geophys. Res. 62 509
[6] Sych R, Nakariakov V M, Karlicky M, et al. 2009 Astron. Astrophys. 505 791
[7] Gosling J T, Phan T D, Lin R P, et al. 2007 Geophys. Res. Lett. 34 15110
[8] Nilson P M, Willingale L, Kaluza M C, et al. 2006 Phys. Rev. Lett. 97 255001
[9] Li C K, Seguin F H, Frenje J A, et al. 2007 Phys. Rev. Lett. 99 055001
[10] Dong Q L, Wang S J, Lu Q M, et al. 2012 Phys. Rev. Lett. 108 215001
[11] Ping Y, Zhong J, Wang X, et al. 2023 Nat. Phys. 19 263
[12] Pesnell W D, Thompson B J and Chamberlin P C 2012 Solar Phys. 275 3
[13] Fox N J, Velli M C, Bale S D, et al. 2016 Space Sci. Rev. 204 7
[14] Borghesi M, Campbell D H, Schiavi A, et al. 2002 Laser Part. Beams 20 269
[15] Korobkin V V and Serov R V 1966 JETP Lett. 4 70
[16] Zhang Y, Liu Z, Xing C, et al. 2023 Rev. Sci. Instrum. 94 033505
[17] Stamper J A and Ripin B H 1975 Phys. Rev. Lett. 34 138
[18] Martin D H and Puplett E 1970 Infrared Phys. 10 105
[19] Zaraś-Szydl owska A, Pisarczyk T, Chodukowski T, et al. 2020 AIP Adv. 10 115201
[1] Model of self-generated magnetic field generation from relativistic laser interaction with solid targets
Rui Yan(严睿), De-Bin Zou(邹德滨), Na Zhao(赵娜), Xiao-Hu Yang(杨晓虎), Xiang-Rui Jiang(蒋祥瑞), Li-Xiang Hu(胡理想), Xin-Rong Xu(徐新荣), Hong-Yu Zhou(周泓宇), Tong-Pu Yu(余同普), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), and Yan Yin(银燕). Chin. Phys. B, 2024, 33(5): 055203.
[2] Three-dimensional magnetic reconnection in complex multiple X-point configurations in an ancient solar-lunar terrestrial system
Xiang-Lei He(何向磊), Ao-Hua Mao(毛傲华), Meng-Meng Sun(孙萌萌), Ji-Tong Zou(邹继同), and Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2024, 33(3): 035202.
[3] Particle-in-cell simulations of low-β magnetic reconnection driven by laser interaction with a capacitor-coil target
Xiaoxia Yuan(原晓霞), Cangtao Zhou(周沧涛), Hua Zhang(张华), Ran Li(李然), Yongli Ping(平永利), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2023, 32(5): 054101.
[4] Collisionless magnetic reconnection in the magnetosphere
Quanming Lu(陆全明), Huishan Fu(符慧山), Rongsheng Wang(王荣生), and San Lu(卢三). Chin. Phys. B, 2022, 31(8): 089401.
[5] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[6] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[7] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[8] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[9] Formation of electron depletion layer and parallel electric field in the separatrix region of anti-parallel magnetic reconnection
Zisheng Li(李子圣), Huanyu Wang(王焕宇), Xinliang Gao(高新亮). Chin. Phys. B, 2019, 28(7): 075203.
[10] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[11] Error analysis and Stokes parameter measurement of rotating quarter-wave plate polarimeter
Dan-Dan Zhi(支丹丹), Jian-Jun Li(李健军), Dong-Yang Gao(高冬阳), Wen-Chao Zhai(翟文超), Xiong-Hao Huang(黄雄豪), Xiao-Bing Zheng(郑小兵). Chin. Phys. B, 2017, 26(12): 124201.
[12] Out-of-plane shear flow effects on fast magnetic reconnection in a two-dimensional hybrid simulation model
Wang Lin (王琳), Wang Xian-Qu (王先驱), Wang Xiao-Gang (王晓钢), Liu Yue (刘悦). Chin. Phys. B, 2014, 23(2): 025203.
[13] Passive magnetic shielded spin polarized electron source with optical electron polarimeter
Ding Hai-Bing(丁海兵), Pang Wen-Ning(庞文宁), Liu Yi-Bao(刘义保), and Shang Ren-Cheng(尚仁成). Chin. Phys. B, 2007, 16(1): 51-57.
[14] Experimental study on helium optical electron polarimetry
Ding Hai-Bing (丁海兵), Pang Wen-Ning (庞文宁), Liu Yi-Bao (刘义保), Shang Ren-Cheng (尚仁成). Chin. Phys. B, 2005, 14(12): 2440-2443.
[15] Study on optical electron polarimeter and measurement of the relative Stokes parameters of weak light
Ruan Cun-Jun (阮存军), Pang Wen-Ning (庞文宁), Gao Jun-Fang (高君芳), Shang Ren-Cheng (尚仁成). Chin. Phys. B, 2002, 11(2): 126-131.
No Suggested Reading articles found!