Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 055201    DOI: 10.1088/1674-1056/ad24d4
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Characteristics of the electromagnetic wavepropagation inmagnetized plasma sheath and practical methodfor blackout mitigation

Xiang Wu(吴翔), Jiahui Zhang(张珈珲)†, Guoxiang Dong(董果香), and Lei Shi(石磊)
School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China
Abstract  Magnetic window is considered as an effective method to solve thecommunication blackout issue. COMSOL software package based on the finiteelement method is utilized to simulate the propagation of right-handedcircularly polarized wave in the magnetized plasma sheath. We assume adouble Gaussian model of electron density and an exponential attenuationmodel of magnetic field. The propagation characteristics of right-handedcircularly polarized wave are analyzed by the observation of the reflected,transmitted and loss coefficient. The numerical results show that thepropagation of right-handed circularly polarized wave in the magnetizedplasma sheath varies for different incident angles, collision frequencies,non-uniform magnetic fields and non-uniform plasma densities. We notice thatreducing the wave frequency can meet the propagation conditions of whistlemode in the weak magnetized plasma sheath. And the transmittance of whistlemode is less affected by the variation of the electron density and thecollision frequency. It can be used as a communication window.
Keywords:  magnetized plasma sheath      communication blackout      finiteelement      incident angle      whistler wave  
Received:  30 October 2023      Revised:  16 January 2024      Accepted manuscript online: 
PACS:  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
  52.25.Xz (Magnetized plasmas)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275202, 62371372, 62101406,and 62001340), China Postdoctoral Science Foundation(Grant Nos. 2022M71490 and 2020M673341), the Innovation Capability Support Program of Shaanxi Province, China(Grant No. 2022TD-37), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2023-JC-YB-549).
Corresponding Authors:  Jiahui Zhang,E-mail:zhangjh1@mail.ustc.edu.cn     E-mail:  zhangjh1@mail.ustc.edu.cn

Cite this article: 

Xiang Wu(吴翔), Jiahui Zhang(张珈珲), Guoxiang Dong(董果香), and Lei Shi(石磊) Characteristics of the electromagnetic wavepropagation inmagnetized plasma sheath and practical methodfor blackout mitigation 2024 Chin. Phys. B 33 055201

[1] Rybak J P and Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7 879
[2] Liu Z W, Bao W M, Li X P, Liu D L and Bai B W 2015 IEEE Trans. Plasma Sci. 43 3147
[3] Stenzel R L 1976 Phys. Fluids 19 857
[4] Chen J M, Yuan K, Shen L F, Deng X H, Hong L J and Yao M 2016 Prog. Electromagn. Res. 157 21
[5] Kim M, Keidar M and Boyd L D 2008 J. Spacecr. Rockets 45 1223
[6] Wang M Y, Yu M X, Xu Z T, Li G P, Jiang B J and Xu J 2015 IEEE Trans. Plasma Sci. 43 4182
[7] Wang M Y, Zhang M, Li G P, Jiang B J, Zhang X C and Xu J 2016 Plasma Sci. Technol. 18 798
[8] Li J, Pi Y M and Yang X B 2014 Wirel. Commun. Mob. Com. 14 1252
[9] Hodara H 1961 Proc. IRE 49 1825
[10] Zhao Q, Xing X J, Xuan Y L and Liu S Z 2014 Plasma Sci. Technol. 16 614
[11] Starkey R P 2015 J. Spacecr. Rockets 52 426
[12] Liu J F, Ma H Y, Jiao Z H, Bai G H, Fang Y, Yi Y M and Xi X I 2020 IEEE Trans. Plasma Sci. 48 2706
[13] Zhou H, Li X P, Xie K, Liu Y M, Yao B and Ai W 2017 AIP Adv. 7 025114
[14] Yuan K, Shen L F, Yao M, Deng X H, Chen Z and Hong L J 2018 Phys. Plasma 25 013302
[15] Zhou H, Li X P, Liu Y M, Bai B W and Xie K 2017 IEEE Trans. Plasma Sci. 45 15
[16] Thoma C, Rose D V, Miller C L, Clark R E and Hughes T P 2009 J. Appl. Phys. 106 043301
[17] Brambilla M 1999 Plasma Phys. Controlled Fusion 41 1
[18] Rawhouser R 1971 NASA Langley Res. Center 252 3
[19] Ouyang W C, Jin T, Wu Z W and Deng W F 2021 IEEE Trans. Plasma Sci. 49 460
[20] Guo X F, Yang Y and Zheng X J 2004 Appl. Math. Mech. 25 297
[21] Wang R K, Zuo H F and Meng L V 2011 Aeronautical Comput. Techn. 41 19
[22] Zhang J H, Liu Y M, Li X P, Shi L, Yang M and Bai B W 2019 AIP Adv. 9 055316
[23] Grantham W L 1971 NASA Langley Res. Center 252 65
[24] Guo S S, Xie K, Sun B, Xi R Y and Liu Y 2021 Plasma Science and Technology 23 075401
[1] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[2] Effects of proton irradiation at different incident angles on InAlAs/InGaAs InP-based HEMTs
Shu-Xiang Sun(孙树祥), Zhi-Chao Wei(魏志超), Peng-Hui Xia(夏鹏辉), Wen-Bin Wang(王文斌), Zhi-Yong Duan(段智勇), Yu-Xiao Li(李玉晓), Ying-Hui Zhong(钟英辉), Peng Ding(丁芃), Zhi Jin(金智). Chin. Phys. B, 2018, 27(2): 028502.
[3] Test particle simulations of resonant interactions between energetic electrons and discrete, multi-frequency artificial whistler waves in the plasmasphere
Chang Shan-Shan (常珊珊), Ni Bin-Bin (倪彬彬), Zhao Zheng-Yu (赵正予), Gu Xu-Dong (顾旭东), Zhou Chen (周晨). Chin. Phys. B, 2014, 23(8): 089401.
[4] A novel four-legged loaded element thick-screen frequency selective surface with a stable performance
Tang Guang-Ming (唐光明), Miao Jun-Gang (苗俊刚), Dong Jin-Ming (董金明). Chin. Phys. B, 2012, 21(12): 128401.
[5] Frequency selective surface with better polarization-independency for arbitrary incident angle
Jia Hong-Yan(贾宏燕), Gao Jin-Song(高劲松), and Feng Xiao-Guo(冯晓国). Chin. Phys. B, 2009, 18(3): 1227-1230.
No Suggested Reading articles found!