PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Simulation of deuterium pellet ablation and deposition in the EAST tokamak with HPI2 code |
Da-Zheng Li(李大正)1, Jie Zhang(张洁)2,†, Ji-Lei Hou(侯吉磊)3, Mao Li(李懋)1, and Ji-Zhong Sun(孙继忠)1,‡ |
1 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China; 2 Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China, Hefei 230026, China; 3 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract Pellet injection is a primary method for fueling the plasma in magnetic confinement devices. For that goal the knowledges of pellet ablation and deposition profiles are critical. In the present study, the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak. Pellet ablation and deposition profiles were evaluated for various pellet injection locations, with the aim at optimizing the pellet injection to obtain a deep fueling depth. In this study, we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes. The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles: 0°, 45°, and 60°. The pellet injection on the high field side (HFS) can achieve a more ideal deposition depth than on the low field side (LFS). Among these angles, horizontal injection on the middle plane is relatively better on either the HFS or the LFS. When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS, it can achieve a similar deposition depth to the one of its corresponding side. When the pre-cooling effect is taken into account, the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS. The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak.
|
Received: 09 November 2023
Revised: 27 December 2023
Accepted manuscript online: 15 January 2024
|
PACS:
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
52.65.-y
|
(Plasma simulation)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12205196 and 12275040) and the National Key Research and Development Program of China (Grant No. 2022YFE03090003). |
Corresponding Authors:
Jie Zhang, Ji-Zhong Sun
E-mail: jiez111@ustc.edu.cn;jsun@dlut.edu.cn
|
Cite this article:
Da-Zheng Li(李大正), Jie Zhang(张洁), Ji-Lei Hou(侯吉磊), Mao Li(李懋), and Ji-Zhong Sun(孙继忠) Simulation of deuterium pellet ablation and deposition in the EAST tokamak with HPI2 code 2024 Chin. Phys. B 33 045204
|
[1] Kukushkin A S, Polevoi A R, Pacher H D, Pacher G W and Pitts R A 2011 J. Nucl. Mater. 415 S497 [2] Wu X, Li H, Wang Z, Feng H and Zhou Y 2017 Chin. Phys. B 26 065201 [3] Parail V, Belo P, Boerner P, Bonnin X, Corrigan G, Coster D, Ferreira J, Foster A, Garzotti L, Hogeweij G M D, Houlberg W, Imbeaux F, Johner J, Kochl F, Kotov V, Lauro-Taroni L, Litaudon X, Lonnroth J, Pereverzev G, Peysson Y, Saibene G, Sartori R, Schneider M, Sips G, Strand P, Tardini G, Valovic M, Wiesen S, Wischmeier M and Zagorski R 2009 Nucl. Fusion 49 075030 [4] McCarthy K J, Panadero N, Combs S K, Tamura N, Ascasibar E, Calvo M, Chmyga A, Estrada T, Fontdecaba J M, Garcia R, Hernández Sánchez J, Khabanov P, Liners M, Melnikov A V, Pastor I and Rojo B 2019 Plasma Phys. Control. Fusion 61 014013 [5] Milora S L, Houlberg W A, Lengyel L L and Mertens V 1995 Nucl. Fusion 35 657 [6] Parks P B and Baylor L R 2005 Phys. Rev. Lett. 94 125002 [7] Li M, Sun J, Wang Y and Xia T 2021 Nucl. Mater. Energy 26 100888 [8] Baylor L R, Jernigan T C, Parks P B, Antar G, Brooks N H, Combs S K, Fehling D T, Foust C R, Houlberg W A and Schmidt G L 2007 Nucl. Fusion 47 1598 [9] Futatani S, Huijsmans G, Loarte A, Baylor L R, Commaux N, Jernigan T C, Fenstermacher M E, Lasnier C, Osborne T H and Pegourié B 2014 Nucl. Fusion 54 073008 [10] Lang P T, Nakano T, Davis S, Matsunaga G, Pégourié B, Ploeckl B and Treuterer W 2019 Fusion Eng. Des. 146 91 [11] Xu H B, Zhu G L, Liu D Q, Vinyar I, Wang M J and Lukin A 2012 Fusion Sci. Technol. 62 316 [12] Pégourié B and Géraud A 2009 Fusion Sci. Technol. 56 1318 [13] Reksoatmodjo R, Mordijck S, Hughes J W, Lore J D and Bonnin X 2021 Nucl. Mater. Energy 27 100971 [14] Hou J, Hu J, Chen Y, Wang Y, Zang Q, Xu J, Liu H, Tritz K, Gilson E, Yuan X, Sun Z, Maingi R, Zhao H and Li J 2019 Fusion Eng. Des. 145 79 [15] Chen W T, Sun J Z, Gao F, Peng L and Wang D Z 2022 Chin. Phys. B 31 075204 [16] Li C Z, Hu J S, Chen Y, Vinyar I V, Li J G and Lukin Y 2014 Fusion Eng. Des. 89 99 [17] Hou J, Chen Y, Zuo G, Hu J, Mao S, Yuan X, Huang J, Wu M, Xu L, Zhao H, Yuan J, Wang S, Liu H, Meng L, Shi T, Li P and Li J 2022 Plasma Phys. Control. Fusion 64 055010 [18] Parks P B and Turnbull R J 1978 Phys. Fluids 21 1735 [19] Pégourié B, Waller V, Dumont R J, Eriksson L G, Garzotti L, Géraud A and Imbeaux F 2005 Plasma Phys. Control. Fusion 47 17 [20] Gao F, Sun J, Sun Z, Zuo G, Hu J, Loarte A, Bonnin X, Peng L and Liu J 2020 Nucl. Fusion 60 066022 [21] Sun J, Liu L, Sun Z, Li M, Li N and Wang D 2018 Fusion Eng. Des. 136 834 [22] McClenaghan J, Lao L, Parks P, Wu W, Zhang J and Chan V 2023 Nucl. Fusion 63 036015 [23] Zhang J and Parks P 2020 Nucl. Fusion 60 066027 [24] Zhang J, McClenaghan J, Parks P, Lao L and Wu W 2022 Nucl. Fusion 62 086012 [25] Houlberg W A and Attenberger S E 1988 Nucl. Fusion 28 595 [26] Garzotti L, Pégourié B, Géraud A, Frigione D and Baylor L R 1997 Nucl. Fusion 37 1167 [27] Artaud J F, Basiuk V, Imbeaux F, Schneider M, Garcia J, Giruzzi G, Huynh P, Aniel T, Albajar F, Ané J M, Bécoulet A, Bourdelle C, Casati A, Colas L, Decker J, Dumont R, Eriksson L G, Garbet X, Guirlet R, Hertout P, Hoang G T, Houlberg W, Huysmans G, Joffrin E, Kim S H, Köchl F, Lister J, Litaudon X, Maget P, Masset R, Pégourié B, Peysson Y, Thomas P, Tsitrone E and Turco F 2010 Nucl. Fusion 50 043001 [28] Kalupin D, Ivanova-Stanik I, Voitsekhovitch I, Ferreira J, Coster D, Alves L L, Aniel T, Artaud J F, Basiuk V, Bizarro J P S, Coelho R, Czarnecka A, Huynh P, Figueiredo A, Garcia J, Garzotti L, Imbeaux F, Köchl F, Nave M F, Pereverzev G, Sauter O, Scott B D, Stankiewicz R and Strand P 2013 Nucl. Fusion 53 123007 [29] Geulin E and Pégourié B 2022 Plasma Fusion Res. 17 2102101 [30] Pégourié B and Dubois M A 1989 Nucl. Fusion 29 745 [31] Pégourié B and Picchiottino J M 1996 Phys. Plasmas 3 4594 [32] Pégourié B, Waller V, Nehme H, Garzotti L and Géraud A 2007 Nucl. Fusion 47 44 [33] Köchl F, Pegourie B, Matsuyama A, Nehme H, Waller V, Frigione D, Garzotti L, Kamelander G, Parail V and JET EFDA 2012 Modelling of Pellet Particle Ablation and Deposition:The Hydrogen Pellet Injection code HPI2 EUROfusion Prepr EFDA-JET-PR(12)57 [34] Parks P B, Sessions W D and Baylor L R 2000 Phys. Plasmas 7 1968 [35] Pégourié B 2007 Plasma Phys. Control. Fusion 49 R87 [36] Rozhansky V, Senichenkov I, Veselova I and Schneider R 2004 Plasma Phys. Control. Fusion 46 575 [37] Hu J S, Sun Z, Li C Z, Zhen X W, Li J G, Guo H Y, Li J H, Wang L, Gan K F, Chen Y, Ren J, Zuo G Z, Yao X J, Hu L Q, Gong X Z, Wan B N, Zou X L, Mansfield D K, Liang Y F and Vinyar I 2015 J. Nucl. Mater. 463 718 [38] Lang P T, Büchl K, Kaufmann M, Lang R S, Mertens V, Müller H W and Neuhauser J 1997 Phys. Rev. Lett. 79 1487 [39] Hou J, Chen Y, Yuan X, Limeng M, Sun Z, Zuo G and Hu J 2020 Fusion Eng. Des. 153 111482 [40] Hou J, Chen Y, Vinyar I, Yuan X and Hu J 2018 Fusion Eng. Des. 130 69 [41] Müller H W, Dux R, Kaufmann M, Lang P T, Lorenz A, Maraschek M, Mertens V and Neuhauser J 2002 Nucl. Fusion 42 301 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|