Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 064101    DOI: 10.1088/1674-1056/ad2dcb
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in laser wakefield acceleration

Guang-Wei Lu(卢光伟)1, Yao-Jun Li(李曜均)1, Xi-Chen Hu(胡曦辰)1, Si-Yu Chen(陈思宇)1, Hao Xu(徐豪)1, Ming-Yang Zhu(祝铭阳)1, Wen-Chao Yan(闫文超)1,2,†, and Li-Ming Chen(陈黎明)1,2,‡
1 Key Laboratory for Laser Plasmas of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China;
2 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration (LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima (FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle (for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.
Keywords:  relativistic electron beams      acceleration by laser-plasma interactions      finite element analysis  
Received:  24 November 2023      Revised:  26 December 2023      Accepted manuscript online:  28 February 2024
PACS:  41.75.Ht (Relativistic electron and positron beams)  
  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
  02.70.Dh (Finite-element and Galerkin methods)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1601700), the National Natural Science Foundation of China (Grant Nos. 12074251, 11991073, 12335016, 12305272, and 12105174), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25000000 and XDA25030400), and Yangyang Development Fund, China.
Corresponding Authors:  Wen-Chao Yan, Li-Ming Chen     E-mail:  wenchaoyan@sjtu.edu.cn;lmchen@sjtu.edu.cn

Cite this article: 

Guang-Wei Lu(卢光伟), Yao-Jun Li(李曜均), Xi-Chen Hu(胡曦辰), Si-Yu Chen(陈思宇), Hao Xu(徐豪), Ming-Yang Zhu(祝铭阳), Wen-Chao Yan(闫文超), and Li-Ming Chen(陈黎明) Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in laser wakefield acceleration 2024 Chin. Phys. B 33 064101

[1] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229
[2] Di Mitri S and Cornacchia M 2014 Phys. Rep. 539 1
[3] Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C, Xu Y, Wu F X, Leng Y X, Li R X and Xu Z Z 2016 Phys. Rev. Lett. 117 124801
[4] Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F and Malka V 2004 Nature 431 541
[5] Geddes C G R, Toth Cs, van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J and Leemans W P 2004 Nature 431 538
[6] Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R and Krushelnick K 2004 Nature 431 535
[7] Zhu X, Li B, Liu F, Li J, Bi Z, Ge X, Deng H, Zhang Z, Cui P, Lu L, Yan W, Yuan X, Chen L, Cao Q, Liu Z, Sheng Z, Chen M and Zhang J 2023 Phys. Rev. Lett. 130 215001
[8] Blumenfeld I, Clayton C E, Decker F J, Hogan M J, Huang C, Ischebeck R, Iverson R, Joshi C, Katsouleas T, Kirby N, Lu W, Marsh K A, Mori W B, Muggli P, Oz E, Siemann R H, Walz D and Zhou M 2007 Nature 445 741
[9] Hue C S, Wan Y, Levine E Y and Malka V 2023 Matter and Radiation at Extremes 8 024401
[10] Wang J, Zeng M, Li D, Wang X, Lu W and Gao J 2022 Matter and Radiation at Extremes 7 054001
[11] Manahan G G, Habib A F, Scherkl P, Delinikolas P, Beaton A, Knetsch A, Karger O, Wittig G, Heinemann T, Sheng Z M, Cary J R, Bruhwiler D L, Rosenzweig J B and Hidding B 2017 Nat. Commun. 8 15705
[12] Huang K, Jin Z, Nakanii N, Hosokai T and Kando M 2023 Phys. Rev. Accel. Beams 26 112801
[13] Downer M C, Zgadzaj R, Debus A, Schramm U and Kaluza M C 2018 Rev. Mod. Phys. 90 035002
[14] Pollock B B, Clayton C E, Ralph J E, Albert F, Davidson A, Divol L, Filip C, Glenzer S H, Herpoldt K, Lu W, Marsh K A, Meinecke J, Mori W B, Pak A, Rensink T C, Ross J S, Shaw J, Tynan G R, Joshi C and Froula D H 2011 Phys. Rev. Lett. 107 045001
[15] Litos M, Adli E, An W, Clarke C I, Clayton C E, Corde S, Delahaye J P, England R J, Fisher A S, Frederico J, Gessner S, Green S Z, Hogan M J, Joshi C, Lu W, Marsh K A, Mori W B, Muggli P, Vafaei-Najafabadi N, Walz D, White G, Wu Z, Yakimenko V and Yocky G 2014 Nature 515 92
[16] Yan W, Chen L, Li D, Zhang L, Hafz N A M, Dunn J, Ma Y, Huang K, Su L, Chen M, Sheng Z and Zhang J 2014 Proc. Natl. Acad. Sci. USA 111 5825
[17] Mirzaie M, Li S, Zeng M, Hafz N A M, Chen M, Li G Y, Zhu Q J, Liao H, Sokollik T, Liu F, Ma Y Y, Chen L M, Sheng Z M and Zhang J 2015 Sci. Rep. 5 14659
[18] Golovin G, Yan W, Luo J, Fruhling C, Haden D, Zhao B, Liu C, Chen M, Chen S, Zhang P, Banerjee S and Umstadter D 2018 Phys. Rev. Lett. 121 104801
[19] Feng J, Li Y, Wang J, Li D, Li F, Yan W, Wang W and Chen L 2019 Sci. Rep. 9 2531
[20] Jalas S, Kirchen M, Messner P, Winkler P, Hübner L, Dirkwinkel J, Schnepp M, Lehe R and Maier A R 2021 Phys. Rev. Lett. 126 104801
[21] Ke L T, Feng K, Wang W T, Qin Z Y, Yu C H, Wu Y, Chen Y, Qi R, Zhang Z J, Xu Y, Yang X J, Leng Y X, Liu J S, Li R X and Xu Z Z 2021 Phys. Rev. Lett. 126 214801
[22] Chen Q, Maslarova D, Wang J, Lee S X, Horný V and Umstadter D 2022 Phys. Rev. Lett. 128 164801
[23] Rabhi N, Batani D, Boutoux G, Ducret J E, Jakubowska K, LantuejoulThfoin I, Nauraye C, Patriarca A, Saïd A, Semsoum A, Serani L, Thomas B and Vauzour B 2017 Rev. Sci. Instrum. 88 113301
[24] Singh S, Slavicek T, Hodak R, Versaci R, Pridal P and Kumar D 2017 Rev. Sci. Instrum. 88 075105
[25] Wang T Y, Zhou Z Q, Peng J P, Gao Y K and Zhang Y H 2022 Chin. Phys. B 31 076107
[26] Streeter M J V, Colgan C, Cobo C C, Arran C, Los E E, Watt R, Bourgeois N, Calvin L, Carderelli J, Cavanagh N, Dann S J D, Fitzgarrald R, Gerstmayr E, Joglekar A S, Kettle B, McKenna P, Murphy C D, Najmudin Z, Parsons P, Qian Q, Rajeev P P, Ridgers C P, Symes D R, Thomas A G R, Sarri G and Mangles S P D 2023 High Power Laser Sci. Eng. 11 1
[27] Batygin Y K 2005 Detectors and Associated Equipment 539 455
[28] Lund S M, Kikuchi T and Davidson R C 2009 Phys. Rev. ST Accel. Beams 12 114801
[29] Lee S J R, Ding F, Manby F R and Miller T F 2019 J. Chem. Phys. 151 064112
[30] Amarasinghe P A G M, Abeygunawardane S K and Singh C 2020 IEEE Access 8 138661
[31] Brömmelhoff K, Henze S, Gerstenberger R, Fischer T, Schell N, Uhlmann E and Reimers W 2013 Journal of Materials Processing Technology 213 2211
[32] Sun X, Yu Y, Yang Y, Dong J, Böhm C and Chen X 2020 Chin. Phys. B 29 108901
[1] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[2] Design and optimization of carbon nanotube/polymer actuator by using finite element analysis
Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高). Chin. Phys. B, 2017, 26(4): 048801.
[3] Finite element analysis of ionic liquid gel soft actuator
Bin He(何斌), Cheng-Hong Zhang(张成红), An Ding(丁安). Chin. Phys. B, 2017, 26(12): 126102.
[4] Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业). Chin. Phys. B, 2016, 25(10): 103202.
[5] Three-axis magnetic flux leakage in-line inspection simulation based on finite-element analysis
Feng Jian (冯健), Zhang Jun-Feng (张峻峰), Lu Sen-Xiang (卢森骧), Wang Hong-Yang (王宏阳), Ma Rui-Ze (马瑞泽). Chin. Phys. B, 2013, 22(1): 018103.
[6] Biomechanical behaviors of dragonfly wing: relationship between configuration and deformation
Ren Huai-Hui(任淮辉), Wang Xi-Shu(王习术), Chen Ying-Long(陈应龙), and Li Xu-Dong(李旭东) . Chin. Phys. B, 2012, 21(3): 034501.
[7] A novel anti-shock silicon etching apparatus for solving diaphragm release problems
Shi Sha-Li(石莎莉), Chen Da-Peng(陈大鹏), Ou Yi(欧毅), Jing Yu-Peng(景玉鹏), Xu Qiu-Xia(徐秋霞), and Ye Tian-Chun(叶甜春). Chin. Phys. B, 2010, 19(6): 060701.
No Suggested Reading articles found!