Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047405    DOI: 10.1088/1674-1056/ad21f7
RAPID COMMUNICATION Prev   Next  

Co-doped BaFe2As2 Josephson junction fabricated with a focused helium ion beam

Ziwen Chen(陈紫雯)1,2,3,4, Yan Zhang(张焱)1,2,3,4,†, Ping Ma(马平)1,2,3,4,‡, Zhongtang Xu(徐中堂)5,§, Yulong Li(李宇龙)1,2,3,4, Yue Wang(王越)1,2,3,4, Jianming Lu(路建明)1,2,3,4, Yanwei Ma(马衍伟)5, and Zizhao Gan(甘子钊)1,2,3,4
1 Applied Superconductivity Research Center, Peking University, Beijing 100871, China;
2 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871, China;
3 Institute of Condensed Matter Physics, School of Physics, Peking University, Beijing 100871, China;
4 Yangtze Delta Institute of Optoelectronics, Peking University, Beijing 100871, China;
5 Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices, therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance. In this work, we have successfully fabricated Josephson junctions from Co-doped BaFe2As2 thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam (FHIB). The electrical transport properties were investigated for junctions fabricated with various He+ irradiation doses. The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K, and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He+ irradiation. Significant Jc suppression by more than two orders of magnitude can be achieved by increasing the He+ irradiation dose, which is advantageous for the realization of low noise ion pnictide thin film devices. Clear Shapiro steps are observed under 10 GHz microwave irradiation. The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe2As2 Josephson junction with high reproducibility using the FHIB technique, laying the foundation for future investigating the mechanism of iron-based superconductors, and also the further implementation in various superconducting electronic devices.
Keywords:  focused helium ion beam      Co doped BaFe2As2      Josephson junction  
Received:  29 December 2023      Revised:  14 January 2024      Accepted manuscript online:  24 January 2024
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  85.25.Cp (Josephson devices)  
  07.78.+s (Electron, positron, and ion microscopes; electron diffractometers)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2020YFF01014706 and 2017YFC0601901) and the National Natural Science Foundation of China (Grant Nos. 61571019 and 52177026). The authors would like to acknowledge the valuable contributions of Lifeng Tian, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, for his help in use of helium ion microscope; and Ziqing Chen for the artistic drawing of the Ba122:Co junction fabricated by a focused helium ion beam.
Corresponding Authors:  Yan Zhang, Ping Ma, Zhongtang Xu     E-mail:  zhang_yan@pku.edu.cn;maping@pku.edu.cn;ztxu@mail.iee.ac.cn

Cite this article: 

Ziwen Chen(陈紫雯), Yan Zhang(张焱), Ping Ma(马平), Zhongtang Xu(徐中堂), Yulong Li(李宇龙), Yue Wang(王越), Jianming Lu(路建明), Yanwei Ma(马衍伟), and Zizhao Gan(甘子钊) Co-doped BaFe2As2 Josephson junction fabricated with a focused helium ion beam 2024 Chin. Phys. B 33 047405

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[3] Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y and Jin C Q 2008 Solid State Commun. 148 538
[4] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[5] Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
[6] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[7] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[8] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
[9] Zhao J, Huang Q, de la Cruz C, Li S L, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L and Dai P C 2008 Nat. Mater. 7 953
[10] Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F and Zhao Z X 2015 Phys. Rev. B 92 064515
[11] Mu G, Zeng B, Cheng P, Wang Z S, Fang L, Shen B, Shan L, Ren C and Wen H H 2010 Chin. Phys. Lett. 27 037402
[12] Wang D, Lu H Y and Wang Q H 2013 Chin. Phys. Lett. 30 077404
[13] Chen G F, Li Z, Li G, Hu W Z, Dong J, Zhou J, Zhang X D, Zheng P, Wang N L and Luo J L 2008 Chin. Phys. Lett. 25 3403
[14] Zhao L, Liu H Y, Zhang W T, Meng J Q, Jia X W, Liu G D, Dong X L, Chen G F, Luo J L, Wang N L, Lu W, Wang G L, Zhou Y, Zhu Y, Wang X Y, Xu Z Y, Chen C T and Zhou X J 2008 Chin. Phys. Lett. 25 4402
[15] Mazin, II, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003
[16] Nakamura H, Machida M, Koyama T and Hamada N 2009 J. Phys. Soc. Jpn. 78 123712
[17] Mazin, II and Schmalian J 2009 Phys. C 469 614
[18] Johnston D C 2010 Advances in Physics 59 803
[19] Huang Y L, Feng Z P, Ni S L, Li J, Hu W, Liu S B, Mao Y Y, Zhou H X, Zhou F, Jin K, Wang H B, Yuan J, Dong X L and Zhao Z X 2017 Chin. Phys. Lett. 34 077404
[20] Ma Y W 2012 Superconductor Science & Technology 25 113001
[21] Katase T, Ishimaru Y, Tsukamoto A, Hiramatsu H, Kamiya T, Tanabe K and Hosono H 2010 Supercond. Sci. Technol. 23 082001
[22] Wang T, Yu A, Li C, Liu Y, Peng W, Jiang D and Mu G 2023 Scientia Sinica:Physica, Mechanica et Astronomica 53 127414
[23] Zhang X H, Oh Y S, Liu Y, Yan L Q, Kim K H, Greene R L and Takeuchi I 2009 Phys. Rev. Lett. 102 147002
[24] Katase T, Ishimaru Y, Tsukamoto A, Hiramatsu H, Kamiya T, Tanabe K and Hosono H 2010 Appl. Phys. Lett. 96 142507
[25] Larbalestier D, Gurevich A, Feldmann D M and Polyanskii A 2001 Nature 414 368
[26] Katase T, Ishimaru Y, Tsukamoto A, Hiramatsu H, Kamiya T, Tanabe K and Hosono H 2011 Nat. Commun. 2 409
[27] Hilgenkamp H and Mannhart J 2002 Rev. Mod. Phys. 74 485
[28] Cybart S A, Cho E Y, Wong T J, Wehlin B H, Ma M K, Huynh C and Dynes R C 2015 Nat. Nanotechnol. 10 598
[29] Kasaei L, Melbourne T, Manichev V, Feldman L C, Gustafsson T, Chen K, Xi X X and Davidson B A 2018 AIP Adv. 8 075020
[30] Wang Y T, LeFebvre J C, Cho E Y, McCoy S J, Li H, Gu G D, Kadowaki K and Cybart S A 2021 IEEE Trans. Appl. Supercond 31 1100104
[31] Kano M, Kohama Y, Graf D, Balakirev F, Sefat A S, McGuire M A, Sales B C, Mandrus D and Tozer S W 2009 J. Phys. Soc. Jpn. 78 084719
[32] Kasaei L, Manichev V, Li M, Feldman L C, Gustafsson T, Colantes Y, Hellstrom E, Demir M, Acharya N, Bhattarai P, Chen K, Xi X X and Davidson B A 2019 Supercond. Sci. Technol. 32 095009
[33] Yuan P, Xu Z, Li C, Quan B, Li J, Gu C and Ma Y 2018 Supercond. Sci. Technol. 31 025002
[34] Chen Z W, Li Y L, Zhu R, Xu J, Xu T Q, Yin D L, Cai X W, Wang Y, Lu J M, Zhang Y and Ma P 2022 Chin. Phys. Lett. 39 077402
[35] Muller B, Karrer M, Limberger F, Becker M, Schroppel B, Burkhardt C J, Kleiner R, Goldobin E and Koelle D 2019 Phys. Rev. Appl. 11 044082
[36] Vale L R, Ono R H and Rudman D A 1997 IEEE Trans. Appl. Supercond. 7 3193
[1] Synchronization and firing mode transition of two neurons in a bilateral auditory system driven by a high--low frequency signal
Charles Omotomide Apata, Yi-Rui Tang(唐浥瑞), Yi-Fan Zhou(周祎凡), Long Jiang(蒋龙), and Qi-Ming Pei(裴启明). Chin. Phys. B, 2024, 33(5): 058704.
[2] Light-modulated graphene-based φ0 Josephson junction and -φ0 to φ0 transition
Renxiang Cheng(程任翔), Miao Yu(于苗), Hong Wang(汪洪), Deliang Cao(曹德亮), Xingao Li(李兴鳌), Fenghua Qi(戚凤华), and Xingfei Zhou(周兴飞). Chin. Phys. B, 2024, 33(2): 027302.
[3] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[4] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[5] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[6] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[7] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[8] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[9] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[10] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[11] Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2020, 29(9): 097401.
[12] Quadruple-stacked Nb/NbxSi1-x/Nb Josephson junctions for large-scale array application
Wenhui Cao(曹文会), Jinjin Li(李劲劲), Lanruo Wang(王兰若), Yuan Zhong(钟源), Qing Zhong(钟青). Chin. Phys. B, 2020, 29(6): 067404.
[13] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[14] Simulation and measurement of millimeter-wave radiation from Josephson junction array
Xin Zhang(张鑫), Sheng-Hui Zhao(赵生辉), Li-Tian Wang(王荔田), Jian Xing(邢建), Sheng-Fang Zhang(张胜芳), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Xin-Jie Zhao(赵新杰), Ming He(何明), Lu Ji(季鲁). Chin. Phys. B, 2019, 28(6): 060305.
[15] Development of 0.5-V Josephson junction array devices for quantum voltage standards
Lanruo Wang(王兰若), Jinjin Li(李劲劲), Wenhui Cao(曹文会), Yuan Zhong(钟源), Zhonghua Zhang(张钟华). Chin. Phys. B, 2019, 28(6): 068501.
No Suggested Reading articles found!