Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114204    DOI: 10.1088/1674-1056/abb229
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles

Jiankai Zhu(朱剑凯)1, Xiangxian Wang(王向贤)1, †, Xiaoxiong Wu(吴枭雄)1, Yingwen Su(苏盈文)1, Yueqi Xu(徐月奇)1, Yunping Qi(祁云平)2, Liping Zhang(张丽萍)1, and Hua Yang(杨华)1$
1 School of Science, Lanzhou University of Technology, Lanzhou 730050, China
2 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  

We propose a two-dimensional metal grating with rhombus particles on a gold film structure for refractive index sensing due to its perfect absorption at near-infrared wavelength. Via two-dimensional metal grating coupling, the incident light energy is effectively transformed into the surface plasmons which propagate along the upper surface of the gold film and interact with the surrounding environment in a wide range. The plasmonic resonance mechanism of the structure is discussed in detail by theoretical analysis and finite-difference time-domain method. After optimizing the geometrical parameters, the designed structure shows the sensing performance with a refractive index sensitivity of 1006 nm/RIU. More importantly, this plasmonic refractive index sensor achieves an ultra wide refractive index sensing range from 1.0 to 2.4 with a stable sensing performance. The promising simulation results of the structure show that the sensor has a broad application prospect in the field of biology and chemistry.

Keywords:  plasmonic sensor      refractive index      sensitivity      figure of merit (FOM)  
Received:  11 June 2020      Revised:  29 June 2020      Accepted manuscript online:  25 August 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 61865008 and 61505074) and the HongLiu First-Class Disciplines Development Program of Lanzhou University of Technology.
Corresponding Authors:  Corresponding author. E-mail: wangxx869@lut.edu.cn   

Cite this article: 

Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$ Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles 2020 Chin. Phys. B 29 114204

Fig. 1.  

Schematic view of the proposed plasmonic structure. From top to bottom, the components consist of 2D gold periodic arrays, gold film, and glass substrate. The black and blue arrows represent the propagation direction and polarization direction of the incident light, respectively. Inside the dotted circle shows the enlarged view of the rhombus particles.

Fig. 2.  

The absorption spectrum of the structure in the near-infrared range, where w = 380 nm, h1 = 80 nm, and the period is 1000 nm.

Fig. 3.  

Electric field distribution at the resonance wavelength of (a) mode 1 and (b) mode 2 in the XZ plane along the center of the gold rhombus particles. Electric field distribution at the resonance wavelength of (c) mode 1 and (d) mode 2 on the upper surface of the gold film.

Fig. 4.  

(a) Absorption spectra of the structure with different 2D grating periods when w and h1 are 380 nm and 80 nm, respectively. (b) Comparison between simulation results and theoretical analysis about the resonance wavelengths of mode 2 for different 2D grating periods.

Fig. 5.  

(a) The absorption spectra of the structure when the period and w are 1000 nm and 380 nm, respectively, where h1 varies from 80 nm to 140 nm in step of 20 nm. (b) The absorption spectra of the structure when the period and h1 are 1000 nm and 80 nm, respectively, where w varies from 200 nm to 500 nm in step of 60 nm.

Fig. 6.  

(a) The absorption spectra of the structure with optimized geometrical parameters for different analyte RI. (b) Resonance wavelength and peak strength versus the RI of analyte.

Fig. 7.  

(a) The absorption spectra of the structure when the analyte RI varies from 1.0 to 2.4 in step interval of 0.2. (b) The FOM and FWHM of mode 2 in the ultra wide analyte RI range.

[1]
Liu G, Liu X, Chen J, Li Y, Shi L, Fu G, Liu Z 2019 Sol. Energy Mater. Sol. Cells 190 20 DOI: 10.1016/j.solmat.2018.10.011
[2]
Li J, Chen X, Yi Z, Yang H, Tang Y, Yi Y, Yao W, Wang J, Yi Y 2020 Mater. Today Energy 16 100390 DOI: 10.1016/j.mtener.2020.100390
[3]
Liu Z, Liu G, Huang Z, Liu X, Fu G 2018 Sol. Energy Mater. Sol. Cells 179 346 DOI: 10.1016/j.solmat.2017.12.033
[4]
Li J, Chen Z, Yang H, Yi Z, Chen X, Yao W, Duan T, Wu P, Li G, Yi Y 2020 Nanomaterials 10 257 DOI: 10.3390/nano10020257
[5]
Ge R, Yan B, Xie J, Liu E, Tan W, Liu J 2020 J. Magn. Magn. Mater. 500 166367 DOI: 10.1016/j.jmmm.2019.166367
[6]
Huo Z, Liu E, Liu J 2020 Chin. Opt. Lett. 18 030603 DOI: 10.3788/COL202018.030603
[7]
Zhao H, Xie J, Liu J 2020 Appl. Phys. Express 13 022007 DOI: 10.35848/1882-0786/ab6934
[8]
Hou T, Ge R, Tan W, Liu J 2020 J. Phys. D: Appl. Phys. 53 075104 DOI: 10.1088/1361-6463/ab59f4
[9]
Guo Z, Yan B, Liu J 2020 J. Opt. 22 035002 DOI: 10.1088/2040-8986/ab6b86
[10]
Li M, Feng W, Su W, Wang X 2020 Int. J. Electrochem. Sci. 15 526 DOI: 10.20964/2020.01.77
[11]
Su W, Feng W, Cao Y, Chen L, Li M, Song C 2018 Int. J. Electrochem. Sci. 13 6005 DOI: 10.20964/2018.06.01
[12]
Yan Y, Yang H, Yi Z, Xian T, Li R, Wang X 2019 Desalin. Water Treat. 170 349 DOI: 10.5004/dwt.2019.24747
[13]
Yan Y, Yang H, Yi Z, Wang X, Li R, Xian T 2020 Environ. Eng. Sci. 37 64 DOI: 10.1089/ees.2019.0284
[14]
Wang Y, Jiang F, Chen J, Sun X, Xian T, Yang H 2020 Nanomaterials 10 178 DOI: 10.3390/nano10010178
[15]
Gao H, Zhao X, Zhang H, Chen J, Wang S, Yang H 2020 J. Electron. Mater. 49 5248 DOI: 10.1007/s11664-020-08243-2
[16]
Zheng C, Yang H, Cui Z, Zhang H, Wang X 2017 Nanoscale Res. Lett. 12 608 DOI: 10.1186/s11671-017-2377-1
[17]
Huan H, Jile H, Tang Y, Li X, Yi Z, Gao X, Chen X, Chen J, Wu P 2020 Micromachines 11 309 DOI: 10.3390/mi11030309
[18]
He W, Feng Y, Da Z, Balmakou A, Khakhomov S, Deng Q, Wang J 2020 IEEE Sens. J. 20 1801 DOI: 10.1109/JSEN.2019.2948962
[19]
Wang J, Yang L, Da Z, He W, Zheng G 2019 IEEE Photon. Technol. Lett. 31 561 DOI: 10.1109/LPT.2019.2902437
[20]
Ma J, Liu D, Wang J, Feng Y 2018 Acta Phys. Sin. 67 094102 in Chinese DOI: 10.7498/aps.67.201722922018
[21]
Shao H, Chen C, Wang J, Pan L, Sang T 2017 J. Phys. D: Appl. Phys. 50 384001 DOI: 10.1088/1361-6463/aa80d6
[22]
Wu H, Jile H, Chen Z, Xu D, Yi Z, Chen X, Chen J, Yao W, Wu P, Yi Y 2020 Micromachines 11 189 DOI: 10.3390/mi11020189
[23]
Tong H, Xu Y, Su Y, Wang X 2019 Results Phys. 14 102460 DOI: 10.1016/j.rinp.2019.102460
[24]
Wang X, Pang Z, Yang H, Qi Y 2019 Results Phys. 14 102446 DOI: 10.1016/j.rinp.2019.102446
[25]
Liu X, Liu G, Tang P, Fu G, Du G, Chen Q, Liu Z 2018 Carbon 140 362 DOI: 10.1016/j.carbon.2018.09.001
[26]
Liu G, Chen J, Pan P, Liu Z 2019 IEEE J. Sel. Top. Quantum Electron. 25 4600507 DOI: 10.1109/JSTQE.2018.2879019
[27]
Wang Y, Chen Z, Xu D, Yi Z, Chen X, Chen J, Tang Y, Wu P, Li G, Yi Y 2020 Results Phys. 16 102951 DOI: 10.1016/j.rinp.2020.102951
[28]
Qi Y, Zhou P, Zhang T, Zhang X, Wang Y, Liu C, Bai Y, Wang X 2019 Results Phys. 14 102506 DOI: 10.1016/j.rinp.2019.102506
[29]
Qi Y, Zhang X, Zhou P, Hu B, Wang X 2018 Acta Phys. Sin. 67 197301 in Chinese DOI: 10.7498/aps.67.20180758
[30]
Zhang X, Qi Y, Zhou P, Gong H, Hu B, Yan C 2018 Photonic Sens. 8 367 DOI: 10.1007/s13320-018-0509-6
[31]
Wang X, Wu Y, Wen X, Zhu J, Bai X, Qi Y, Yang H 2020 Opt. Quantum Electron. 52 238 DOI: 10.1007/s11082-020-02360-2
[32]
Wu Y, Wang X, Wen X, Zhu J, Bai X, Jia T, Yang H, Zhang L, Qi Y 2020 Phys. Lett. A 384 126544 DOI: 10.1016/j.physleta.2020.126544
[33]
Wang X, Zhu J, Wu Y, Xu Y, Su Y, Zhang L, Qi Y, Wen X, Yang H 2020 Results Phys. 17 103175 DOI: 10.1016/j.rinp.2020.103175
[34]
Chen J, Wang X, Tang F, Ye X, Yang L, Zhang Y 2020 Results Phys. 16 102867 DOI: 10.1016/j.rinp.2019.102867
[35]
Liu C, Yang L, Liu Q, Wang F, Sun Z, Sun T, Mu H, Chu P K 2018 Plasmonics 13 779 DOI: 10.1007/s11468-017-0572-7
[36]
Liu C, Wang J, Wang F, Su W, Yang L, Lv J, Fu G, Li X, Liu Q, Sun T, Chu P K 2020 Opt. Commun. 464 125496 DOI: 10.1016/j.optcom.2020.125496
[37]
Liu C, Wang J, Jin X, Wang F, Yang L, Lv J, Fu G, Li X, Liu Q, Sun T, Chu P K 2020 Optik (Stuttg). 207 164466 DOI: 10.1016/j.ijleo.2020.164466
[38]
Chen J, Yuan J, Zhang Q, Ge H, Tang C, Liu Y, Guo B 2018 Opt. Mater. Express 8 342 DOI: 10.1364/OME.8.000342
[39]
Chen J, Zhang Q, Peng C, Tang C, Shen X, Deng L, Park G 2018 IEEE Photon. Technol. Lett. 30 728 DOI: 10.1109/LPT.2018.2814216
[40]
Chen J, Fan W, Mao P, Tang C, Liu Y, Yu Y, Zhang L 2017 Plasmonics 12 529 DOI: 10.1007/s11468-016-0294-2
[41]
Chen J, Nie H, Peng C, Qi S, Tang C, Zhang Y, Wang L, Park G S 2018 J. Light. Technol. 36 3481 DOI: 10.1109/JLT.2018.2846019
[42]
Wang X, Zhu J, Tong H, Yang X, Wu X, Pang Z, Yang H, Qi Y 2019 Chin. Phys. B 28 044201 DOI: 10.1088/1674-1056/28/4/044201
[43]
Guner H, Ozgur E, Kokturk G, Celik M, Esen E, Topal A E, Ayas S, Uludag Y, Elbuken C, Dana A 2017 Sens. Actuators B Chem. 239 571 DOI: 10.1016/j.snb.2016.08.061
[44]
Sun P, Zhou C, Jia W, Wang J, Xiang C, Xie Y, Zhao D 2020 Opt. Commun. 459 124946 DOI: 10.1016/j.optcom.2019.124946
[45]
Sui B, Xu Y, Wang Z, Zhang C, Qin L, Li X, Wu S 2019 Opt. Express 27 38382 DOI: 10.1364/OE.27.038382
[46]
Wang X, Zhu J, Wen X, Wu X, Wu Y, Su Y, Tong H, Qi Y, Yang H 2019 Opt. Mater. Express 9 3079 DOI: 10.1364/OME.9.003079
[47]
Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370 DOI: 10.1103/PhysRevB.6.4370
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[3] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[4] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[5] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[6] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[7] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[8] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[9] Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(1): 014206.
[10] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[11] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[12] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[13] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[14] On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux
Fatemeh Abdi. Chin. Phys. B, 2021, 30(11): 117802.
[15] Dynamic behavior of the cyanobacterial circadian clock with regulation of CikA
Ying Li(李莹), Guang-Kun Zhang(张广鹍), and Yan-Ming Ge (葛焰明). Chin. Phys. B, 2021, 30(10): 108702.
No Suggested Reading articles found!