Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027303    DOI: 10.1088/1674-1056/26/2/027303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Impact of coupling geometry on thermoelectric properties of oligophenyl-base transistor

S Ramezani Akbarabadi, H Rahimpour Soleimani, M Bagheri Tagani, Z Golsanamlou
Computational Nanophysics Laboratory(CNL), Department of Physics, University of Guilan, Rasht, P. O. Box 41335-1914, Iran
Abstract  Thermal and electron transport through organic molecules attached to three-dimensional gold electrodes in two different configurations, namely para and meta with thiol-terminated junctions is studied theoretically in the linear response regime using Green's function formalism. We used thiol-terminated (-SH bond) benzene units and found a positive thermopower because the highest occupied molecular orbital (HOMO) is near the Fermi energy level. We investigated the influence of molecular length and molecular junction geometry on the thermoelectric properties. Our results show that the thermoelectric properties are highly sensitive to the coupling geometry and the molecular length. In addition, we observed that the interference effects and increasing molecular length can increase the thermoelectric efficiency of device in a specific configuration.
Keywords:  coupling geometry      figure of merit      Green's function      oligophenyl      thermopower  
Received:  23 June 2016      Revised:  03 November 2016      Accepted manuscript online: 
PACS:  73.50.Lw (Thermoelectric effects)  
  84.60.Bk (Performance characteristics of energy conversion systems; figure of merit)  
  85.80.Fi (Thermoelectric devices)  
Corresponding Authors:  H Rahimpour Soleimani     E-mail:  rahimpour@guilan.ac.ir

Cite this article: 

S Ramezani Akbarabadi, H Rahimpour Soleimani, M Bagheri Tagani, Z Golsanamlou Impact of coupling geometry on thermoelectric properties of oligophenyl-base transistor 2017 Chin. Phys. B 26 027303

[1] Vazquez H, Skouta R, Schneebeli S, Kamenetska M, Breslow R, Venkataraman L and Hybertsen M S 2012 Nat. Nanotechnol. 7 663
[2] Guédon C M, Valkenier H, Markussen T, Thygesen K S, Hummelen J C and Molen S J 2012 Nat. Nanotechnol. 7 305
[3] Arroyo C R, Tarkuc S, Frisenda R, Seldenthuis J S, Woerde C H, Eelkema R, Grozema F C and Zant H S 2013 Angew. Chem. Int. Ed. 52 3152
[4] Ballmann S, Härtle R, Coto P B, Elbing M, Mayor M, Bryce M R, Thoss M and Weber H B 2012 Phys. Rev. Lett. 109 056801
[5] Solomon G C, Andrews D Q, Hansen T, Goldsmith R H, Wasielewski M R, Van Duyne R P and Ratner M A 2008 J. Chem. Phys. 129 054701
[6] Solomon G C, Andrews D Q, Goldsmith R H, Hansen T, Wasielewski M R, Van Duyne R P and Ratner M A 2008 J. Am. Chem. Soc. 130 17301
[7] Solomon G C, Bergfield J P, Stafford C A and Ratner M A 2011 Beilstein J. Nanotechnol. 2 862
[8] Härtle R, Butzin M, Rubio-Pons O and Thoss M 2011 Phys. Rev. Lett. 107 046802
[9] Bergfield J P, Solomon G C, Stafford C A and Ratner M A 2011 Nano Lett. 11 2759
[10] Markussen T, Stadler R and Thygesen K S 2010 Nano Lett. 10 4260
[11] Markussen T, Stadler R and Thygesen K S 2011 Phys. Chem. Chem. Phys. 13 14311
[12] Markussen T and Thygesen K S 2014 Phys. Rev. B 89 085420
[13] Ashcroft N W and Mermin N D 1976 Solid State Physics (New York: Holt, Rinehart and Winston)
[14] Majumdar A 2004 Science 303 777
[15] Ke S H, Yang W, Curtarolo S and Baranger H U 2009 Nano Lett. 9 1011
[16] Venkatasubramanian R, Siivola E, Colpitts T and O'quinn B 2001 Nature 413 597
[17] Harman T C, Taylor P J, Walsh M P and LaForge B E 2002 Science 297 2229
[18] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K and Kanatzidis M G 2004 Science 303 818
[19] Jiang J W, Wang J S and Li B 2010 J. Appl. Phys. 109 014326
[20] Markussen T, Jauho A P and Brandbyge M 2009 Phys. Rev. B 79 035415
[21] Xie Z X, Tang L M, Pan C N, Li K M, Chen K Q and Duan W 2012 Appl. Phys. Lett. 100 073105
[22] Pan C N, Xie Z X, Tang L M and Chen K Q 2012 Appl. Phys. Lett. 101 103115
[23] Zhou Y, Dong J and Li H 2015 RSC Adv. 5 66852
[24] Dong J, Li H and Li L 2013 NPG Asia Mater. 5 e56
[25] Markussen T, Jauho A P and Brandbyge M 2008 Nano Lett. 8 3771
[26] Paulsson M and Datta S 2003 Phys. Rev. B 67 241403
[27] Koch J, Oppen F, Oreg Y and Sela E 2004 Phys. Rev. B 70 195107
[28] Segal D 2005 Phys. Rev. B 72 165426
[29] Reddy P, Jang S Y, Segalman R A and Majumdar A 2007 Science 315 1568
[30] Baheti K, Malen J A, Doak P, Reddy P, Jang S Y, Tilley T D, Majumdar A and Segalman R A 2008 Nano Lett. 8 715
[31] Kubala B, König J and Pekola J 2008 Phys. Rev. Lett. 100 066801
[32] Pauly F, Viljas J K and Cuevas J C 2008 Phys. Rev. B 78 035315
[33] Murphy P, Mukerjee S and Moore J 2008 Phys. Rev. B 78 161406
[34] Finch C M, Garcia-Suarez V M and Lambert C J 2009 Phys. Rev. B 79 033405
[35] Aradhya S V and Venkataraman L 2013 Nat. Nanotechnol. 8 399
[36] Liu Y S and Chen Y C 2009 Phys. Rev. B 79 193101
[37] Liu Y S, Yao H T and Chen Y C 2011 J. Phys. Chem. C 115 14988
[38] Quek S Y, Choi H J, Louie S G and Neaton J B 2010 ACS Nano 5 551
[39] Balachandran J, Reddy P, Dunietz B D and Gavini V 2012 J. Phys. Chem. Lett. 3 1962
[40] Karlström O, Strange M and Solomon G C 2014 J. Chem. Phys. 140 044315
[41] Ke S H, Yang W, Curtarolo S and Baranger H U 2009 Nano Lett. 9 1011
[42] Zotti L A, Bürkle M, Pauly F, Lee W, Kim K, Jeong W, Asai Y, Reddy P and Cuevas J C 2014 New J. Phys. 16 015004
[43] Bürkle M, Hellmuth T J, Pauly F and Asai Y 2015 Phys. Rev. B 91 165419
[44] Strange M, Seldenthuis J S, Verzijl C J O, Thijssen J M and Solomon G C 2015 J. Chem. Phys. 142 084703
[45] Golsanamlou Z, Tagani M B and Soleimani H R 2015 Commun. Theor. Phys. 64 361
[46] Dey M, Maiti S K and Karmakar S N 2011 Org. Electron. 12 1017
[47] Dutta P, Maiti S K and Karmakar S N 2010 Org. Electron. 11 1120
[48] Chen F, Li X, Hihath J, Huang Z and Tao N 2006 J. Am. Chem. Soc. 128 15874
[49] Peng G, Strange M, Thygesen K S and Mavrikakis M 2009 J. Phys. Chem. C 113 20967
[50] Moreno-García P, Gulcur M, Manrique D Z, Pope T, Hong W, Kaliginedi V, Huang C, Batsanov A S, Bryce M R, Lambert C and Wandlowski T 2013 J. Am. Chem. Soc. 135 12228
[51] Bürkle M, Zotti L A, Viljas J K, Vonlanthen D, Mishchenko A, Wandlowski T, Mayor M, Schön G and Pauly F 2012 Phys. Rev. B 86 115304
[52] Dubi Y 2013 New J. Phys. 15 105004
[53] Dubi Y 2013 J. Chem. Phys. 138 114706
[54] Ludoph B and Van Ruitenbeek J M 1999 Phys. Rev. B 59 12290
[55] Ramezani Akbarabadi S, Golsanamlou Z and Rahimpour Soleimani H 2014 Curr. Phys. Chem. 4 285
[56] Zahid F, Paulsson M and Datta S 2003 "Electrical conduction through molecules", Advanced Semiconductors and Organic Nano-Techniques 3
[57] Ramachandran K I, Deepa G and Namboori K 2008 Springer Science and Business Media
[58] Samanta M 1995 Purdue University
[59] redAshcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia: Saunders College Publishing)
[60] Rego L G and Kirczenow G 1999 Phys. Rev. B 59 13080
[61] Wang R Y, Segalman R A and Majumdar A 2006 Appl. Phys. Lett. 89 173113
[62] Golsanamlou Z, Tagani M B and Soleimani H R 2015 Phys. Chem. Chem. Phys. 17 13466
[63] Klöckner J 2014 Phonon Transport and Thermoelectric Properties of Molecular Contacts (University of Konstanz)
[64] Tagani M B and Soleimani H R 2013 J. Appl. Phys. 113 143709
[65] Tagani M B and Soleimani H R 2012 Solid State Commun. 152 914
[66] Golsanamlou Z, Tagani M B and Soleimani H R 2014 Macromolecular Theory and Simulations 23 311
[1] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[2] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[3] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[4] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[5] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[6] Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3
Q Mahmood, N A Noor, T Ghrib, Nessrin A Kattan, Asif Mahmood, and Shahid M Ramay. Chin. Phys. B, 2020, 29(11): 117305.
[7] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[8] Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases
Feng Chi(迟锋), Zhen-Guo Fu(付振国), Liming Liu(刘黎明), Ping Zhang(张平). Chin. Phys. B, 2019, 28(10): 107305.
[9] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[10] Thermoelectric properties of two-dimensional hexagonal indium-VA
Jing-Yun Bi(毕京云), Li-Hong Han(韩利红), Qian Wang(王倩), Li-Yuan Wu(伍力源), Ruge Quhe(屈贺如歌), Peng-Fei Lu(芦鹏飞). Chin. Phys. B, 2018, 27(2): 026802.
[11] Improvement of the thermoelectric efficiency of pyrene-based molecular junction with doping engineering
Mohammad Farid Jamali, Meysam Bagheri Tagani, Hamid Rahimpour Soleimani. Chin. Phys. B, 2017, 26(12): 123101.
[12] Performance analysis of surface plasmon resonance sensor with high-order absentee layer
Qing-Qing Meng(孟庆卿), Xin Zhao(赵鑫), Shu-Jing Chen(陈淑静), Cheng-You Lin(林承友), Ying-Chun Ding(丁迎春), Zhao-Yang Chen(陈朝阳). Chin. Phys. B, 2017, 26(12): 124213.
[13] Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions
Li Yi (李宜), Liu Jian (刘剑), Wang Chun-Lei (王春雷), Su Wen-Bin (苏文斌), Zhu Yuan-Hu (祝元虎), Li Ji-Chao (李吉超), Mei Liang-Mo (梅良模). Chin. Phys. B, 2015, 24(4): 047201.
[14] Multifunctional disk device for optical switch and temperature sensor
Bian Zhen-Yu (卞振宇), Liang Rui-Sheng (梁瑞生), Zhang Yu-Jing (张郁靖), Yi Li-Xuan (易丽璇), Lai Gen (赖根), Zhao Rui-Tong (赵瑞通). Chin. Phys. B, 2015, 24(10): 107801.
[15] A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film
Zhang Zu-Yin (张祖银), Wang Li-Na (王立娜), Hu Hai-Feng (胡海峰), Li Kang-Wen (李康文), Ma Xun-Peng (马勋鹏), Song Guo-Feng (宋国峰). Chin. Phys. B, 2013, 22(10): 104213.
No Suggested Reading articles found!