Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 106301    DOI: 10.1088/1674-1056/ab427d
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations

Engin Ateser1, Oguzhan Okvuran1, Yasemin Oztekin Ciftci2, Haci Ozisik1, Engin Deligoz1
1 Aksaray University, Department of Physics, 68100, Aksaray, Turkey;
2 Gazi University, Science Faculty, Physics Department, 06500, Ankara, Turkey
Abstract  We have reported a first principles study of structural, mechanical, electronic, and thermoelectric properties of the monoclinic ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te). The electronic band structure calculations confirm that all compounds exhibit semiconductor character. Especially, Tl2ZrTe3 and Tl2HfTe3 can be good candidates for thermoelectric materials, having narrow band gaps of 0.169 eV and 0.21 eV, respectively. All of the compounds are soft and brittle according to the second-order elastic constant calculations. Low Debye temperatures also support the softness. We have obtained the transport properties of the compounds by using rigid band and constant relaxation time approximations in the context of Boltzmann transport theory. The results show that the compounds could be considered for room temperature thermoelectric applications (ZT~0.9).
Keywords:  electronic band structure      thermoelectric properties      figure of merit      ternary thallium chalcogens  
Received:  08 November 2018      Revised:  18 August 2019      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  74.25.Ld (Mechanical and acoustical properties, elasticity, and ultrasonic Attenuation)  
  74.25.F- (Transport properties)  
Corresponding Authors:  Engin Ateser     E-mail:  enginateser4@hotmail.com

Cite this article: 

Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations 2019 Chin. Phys. B 28 106301

[41] Page Y L and Saxe P 2002 Phys. Rev. B 65 104104
[1] Gerbi A, Buzio R, Kawale S, Bellingeri E, Martinelli A, Bernini C, Tresca C, Capone M, Profeta G and Ferdeghini C 2017 J. Phys. Condens.: Matter 29 485002
[42] Li S, Ju X and Wan C 2014 Comput. Mater. Sci. 81 378
[2] Ali M 2017 J. Supercond Nov Magn. 30 3409
[43] Yu R, Chong X, Jiang Y, Zhou R, Yuan W and Feng J 2015 RSC Adv. 5 1620
[3] Xu M, Jakobs S, Mazzarello R, Cho J Y, Yang Z, Hollermann H, Shang D, Miao X, Yu Z, Wang L and Wuttig M 2017 J. Phys. Chem. C 121 25447
[44] Hill R 1952 Proc. Phys. Soc. London 65 349
[4] Komisarchik G, Gelbstein Y and Fuks D 2017 Intermetallics 89 16
[45] Mott P H, Dorgan J R and Roland C M 2008 Journal of Sound and Vibration 312 572
[5] Wei K, Khabibullin A R, Stedman T, Woods L M and Nolas G S 2017 J. Appl. Phys. 122 105109
[46] Sohafiq M, Ahmad I and Asodobadi S J 2014 J. Appl. Phys. 1 6 103905
[6] Wang H, Yuan H, Sae Hong S, Li Y and Cui Y 2015 Chem. Soc. Rev. 44 2664
[47] Haines J, Leger J M and Bacquillan G 2001 Ann. Rev. Mater. Res. 31 1
[7] Li L, David S P, Clarina R C and Athena S S 2016 Physica C 531 25
[48] Ravindran P, Fast L, Korzhavyi P A and Johansson B 1998 J. Appl. Phys. 84 4891
[8] Aliev Z S Zúñiga F J Koroteev Y M Breczewski T Babanly N B Amiraslanov I R Politano A Madariaga G Babanly M B Chulkov E V 2016 J. Solid State Chem. 242 1
[49] Deligoz E, Ozisik H B, Colakoglu K and Ciftci Y O 2014 Mater. Sci. Technol. 30 7 842
[9] Guo Q, Chan M, Kuropatwa B A and Kleinke H 2013 Chem. Mater. 25 4097
[50] Chattaraj D, Majumder C and Dash S 2014 J. Alloys Compd. 615 234
[10] Toberer E S, May A F and Snyder G J 2010 Chem. Mater. 22 624
[51] Frantsevich I N, Voronov F F and Bokuta S A 1982 Elastic Constants and Elastic Moduli of Metals and Insulators: Handbook (Naukova Dumka: Kiev)
[11] Banik A, Shenoy U S, Anand S, Waghmare U V and Biswas K 2015 Chem. Mater. 27 581
[52] Johnston I, Keeler G, Rollins R and Spicklemire S 1996 Solid State Physics Simulations, The Consortium for Upper-Level Physics Software (New York: John Wiley)
[12] Zhao L D, Hao S, Lo S H, Wu C I, Zhou X, Lee Y and Kanatzidis M G 2013 J. Am. Chem. Soc. 135 7364
[53] Schreiber E, Anderson O L and Soga N 1973 Elastic constants and their measurements (New York : McGraw-Hill)
[13] Zhao L D, Zhang X, Wu H, Tan G, Pei Y, Xiao Y, Chang C, Wu D, Chi H, Zheng L, Gong S, Uher C and He J M G 2016 J. Am. Chem. Soc. 138 2366
[54] Zhao E, Wang J and Wu Z 2010 J. Comput. Chem. 31 2883
[14] Guo Q, Assoud A and Kleinke H 2014 Adv. Energy Mater. 4 1400348
[55] Miao N, Sa B, Zhou J and Sun Z 2011 Comput. Mater. Sci. 50 1559
[15] Li J F, Liu W S, Zhao L D and Zhou M 2010 NPG Asia Mater. 2 152
[56] Chaput L, Pecheur P, Tobola J and Scherrer H 2005 Phys. Rev. B 72 085126
[16] Karthikeyan N, Ghanta S, Misra S, Jaiganesh G, Jana P P and Sivakumar K 2017 J. Alloys Compd. 729 303
[57] Bilc D I, Mahanti S D and Kanatzidis M G 2006 Phys. Rev. B 74 125202
[17] Orabi R A R, Boucher B, Fontaine B, Gall P, Candolfi C, Lenoir B, Gougeon P, Halet J F and Gautier R 2017 J. Mater. Chem. C 5 12097
[58] Ciftci Y O and Mahanti S D 2016 J. Appl. Phys. 119 145703
[18] Li W, Lin S, Zhang X, Chen Z, Xu X and Pei Y 2016 Chem. Mater. 28 6227
[59] Guo R, Wang X, Kuang Y and Huang B 2015 Phys. Rev. B 92 115202
[19] Heinke F, Eisenburger L, Schlegel R, Schwarzmüller S and Oeckler O 2017 Anorg. Allg. Chem. 643 447
[60] Yu P Y and Cordona M 2010 Fundamentals of Semiconductors; Graduate text in Physics (Berlin: Springer)
[20] Li G, Aydemir U, Duan B, Agne M T, Wang H, Wood M, Zhang Q, Zhai P, Goddard I I I W A and Snyder G J 2017 ACS Appl. Mater. Interfaces 9 40488
[61] Gzyl H 1982 J. Stat. Phys. 29 617
[21] McGuire M A, Schmidt A M, Gascoin F, Snyder G J and DiSalvo F J 2006 J. Solid State Chem. 179 2158
[62] Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, Badding J V and Sofo J O 2003 Phys. Rev. B 68 125210
[22] Assoud A, Shi Y, Guo Q and Kleinke H 2017 J. Solid State Chem. 256 6
[63] Nasr T B, Maghraoui-Meherzi H and Kamoun-Turki N 2016 J. Alloys Compd. 663 123
[23] Shi Y, Assoud A, Sankar C R and Kleinke H 2017 Chem. Mater. 29 9565
[64] Kong F, Hu Y, Hou H, Liu Y, Wang B and Wang L 2012 J. Solid State Chem. 196 511
[24] Guo Q and Kleinke H 2015 J. Alloys Compd. 630 37
[65] Rabin O, Lin Y M and Dresselhaus M S 2001 Appl. Phys. Lett. 79 81
[25] Sankar C R and Aswathy V S 2018 Inorg. Chem. Front. 5 1553
[66] Tritt T M 2004 Thermal Conductivity: Theory, Properties, and Aplications (New York: Kluwer Academic/PLENUM Publishers) p. 75
[26] Sankar C R, Bangarigadu-Sanasy S, Assoud A and Kleinke H 2010 J. Mater. Chem. 20 7485
[67] Kittel C 2004 Introduction to Solid State Physics (8th Edn.) (Hoboken: John Wiley & Sons) p. 156
[27] Kurosaki K, Uneda Muta H and Yamanaka H 2004 J. Alloys Compd. 376 43
[68] Bilc D I, Hautier G, Waroquiers D, Rignanese G M and Ghosez P 2015 Phys. Rev. Lett. 114 136601
[28] Sankar C R, Guch M, Assoud A and Kleinke H 2011 Chem. Mater. 23 3886
[29] Sankar C R, Kuropatwa B A, Assoud A and Kleinke H 2012 Dalton Trans. 41 9646
[30] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[31] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[32] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Blöchl P E 1994 Phys. Rev. B 50 17953
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[37] Madsen G K H and Singh D J 2006 Comput. Phys. Commune. 175 67
[38] Singh D J 2001 Semiconduc. Semimet. 70 125
[39] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[40] Jong D, Chen M, Angsten W, Jain T, Notestine A, Gamst R, Sluiter A, Krishna M, Ande van der Zwaag C, Plata S, Toher J J, Curtarolo C, Ceder S, Persson G, Asta K A and Charting M 2015 Sci. Data 2 150009
[41] Page Y L and Saxe P 2002 Phys. Rev. B 65 104104
[42] Li S, Ju X and Wan C 2014 Comput. Mater. Sci. 81 378
[43] Yu R, Chong X, Jiang Y, Zhou R, Yuan W and Feng J 2015 RSC Adv. 5 1620
[44] Hill R 1952 Proc. Phys. Soc. London 65 349
[45] Mott P H, Dorgan J R and Roland C M 2008 Journal of Sound and Vibration 312 572
[46] Sohafiq M, Ahmad I and Asodobadi S J 2014 J. Appl. Phys. 1 6 103905
[47] Haines J, Leger J M and Bacquillan G 2001 Ann. Rev. Mater. Res. 31 1
[48] Ravindran P, Fast L, Korzhavyi P A and Johansson B 1998 J. Appl. Phys. 84 4891
[49] Deligoz E, Ozisik H B, Colakoglu K and Ciftci Y O 2014 Mater. Sci. Technol. 30 7 842
[50] Chattaraj D, Majumder C and Dash S 2014 J. Alloys Compd. 615 234
[51] Frantsevich I N, Voronov F F and Bokuta S A 1982 Elastic Constants and Elastic Moduli of Metals and Insulators: Handbook (Naukova Dumka: Kiev)
[52] Johnston I, Keeler G, Rollins R and Spicklemire S 1996 Solid State Physics Simulations, The Consortium for Upper-Level Physics Software (New York: John Wiley)
[53] Schreiber E, Anderson O L and Soga N 1973 Elastic constants and their measurements (New York : McGraw-Hill)
[54] Zhao E, Wang J and Wu Z 2010 J. Comput. Chem. 31 2883
[55] Miao N, Sa B, Zhou J and Sun Z 2011 Comput. Mater. Sci. 50 1559
[56] Chaput L, Pecheur P, Tobola J and Scherrer H 2005 Phys. Rev. B 72 085126
[57] Bilc D I, Mahanti S D and Kanatzidis M G 2006 Phys. Rev. B 74 125202
[58] Ciftci Y O and Mahanti S D 2016 J. Appl. Phys. 119 145703
[59] Guo R, Wang X, Kuang Y and Huang B 2015 Phys. Rev. B 92 115202
[60] Yu P Y and Cordona M 2010 Fundamentals of Semiconductors; Graduate text in Physics (Berlin: Springer)
[61] Gzyl H 1982 J. Stat. Phys. 29 617
[62] Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, Badding J V and Sofo J O 2003 Phys. Rev. B 68 125210
[63] Nasr T B, Maghraoui-Meherzi H and Kamoun-Turki N 2016 J. Alloys Compd. 663 123
[64] Kong F, Hu Y, Hou H, Liu Y, Wang B and Wang L 2012 J. Solid State Chem. 196 511
[65] Rabin O, Lin Y M and Dresselhaus M S 2001 Appl. Phys. Lett. 79 81
[66] Tritt T M 2004 Thermal Conductivity: Theory, Properties, and Aplications (New York: Kluwer Academic/PLENUM Publishers) p. 75
[67] Kittel C 2004 Introduction to Solid State Physics (8th Edn.) (Hoboken: John Wiley & Sons) p. 156
[68] Bilc D I, Hautier G, Waroquiers D, Rignanese G M and Ghosez P 2015 Phys. Rev. Lett. 114 136601
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[3] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[4] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[5] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[6] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[7] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[8] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[9] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[10] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[11] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[12] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[13] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[14] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[15] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
No Suggested Reading articles found!