Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107801    DOI: 10.1088/1674-1056/24/10/107801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multifunctional disk device for optical switch and temperature sensor

Bian Zhen-Yu (卞振宇), Liang Rui-Sheng (梁瑞生), Zhang Yu-Jing (张郁靖), Yi Li-Xuan (易丽璇), Lai Gen (赖根), Zhao Rui-Tong (赵瑞通)
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
Abstract  A multifunctional surface plasmon polariton disk device coupled by two metal-insulator-metal (MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as optical switch and temperature sensor by filling disk with liquid crystal and ethanol, respectively. The simulation results demonstrate that the transmission characteristics of an optical switch can be manipulated by adjusting the radius of disk and the slit width between disk and MIM waveguides. The transmittance and modulation depth of optical switch at 1550 nm are up to 64.82% and 17.70 dB, respectively. As a temperature sensor, its figure of merit can reach 30.46. In this paper, an optical switch with better efficiency and a temperature sensor with better sensitivity can be achieved.
Keywords:  surface plasmon polaritons      optical switch      modulation depth      temperature sensor      figure of merit  
Received:  19 January 2015      Revised:  18 May 2015      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.15.+e (Optical properties of fluid materials, supercritical fluids and liquid crystals)  
  78.30.cb (Organic liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275059 and 61307062).
Corresponding Authors:  Liang Rui-Sheng     E-mail:  liangrs@scnu.edu.cn

Cite this article: 

Bian Zhen-Yu (卞振宇), Liang Rui-Sheng (梁瑞生), Zhang Yu-Jing (张郁靖), Yi Li-Xuan (易丽璇), Lai Gen (赖根), Zhao Rui-Tong (赵瑞通) Multifunctional disk device for optical switch and temperature sensor 2015 Chin. Phys. B 24 107801

[1] Wang B and Wang G P 2004 Opt. Lett. 29 1992
[2] Min C J, Wang P, Chen C C, Deng Y, Lu Y H, Ming H, Ning T Y, Zhou Y L and Yang G Z 2008 Opt. Lett. 33 869
[3] Gong Y, Wang L, Hu X, Li X and Liu X 2009 Opt. Express 17 13727
[4] Li X, Wang L N, Guo S L, Li Z Q and Yang M 2014 Acta Phys. Sin. 63 154209 (in Chinese)
[5] Li Q, Wang T, Su Y K, Yan M and Qiu M 2010 Opt. Express 18 8367
[6] Leon I D and Berini P 2010 Nat. Photon. 4 382
[7] Wen K, Yan L, Pan W, Luo B, Guo Z and Guo Y 2012 J. Opt. 14 075001
[8] Lin X S and Huang X G 2008 Opt. Lett. 33 2874
[9] Xiao S S, Liu L and Qiu M 2006 Opt. Express 14 2932
[10] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y and Ebbesen T W 2006 Nature 440 508
[11] Li C F 2012 Physics 41 9 (in Chinese)
[12] Li X Y, Yu Y D and Yu J Z 2013 Physics 42 272 (in Chinese)
[13] Zhu J H, Huang X G, Tao J, Jin X P, Mei X and Zhul Y J 2011 J. Mod. Opt. 58 32
[14] Chen X, Zhang R, Lang P L, Yang H C, Zhou T and Zhou K 2014 J. Mod. Opt. 61 716
[15] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönichsen C and Giessen H 2010 Nano Lett. 10 1103
[16] Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P and Halas N J 2010 Nano Lett. 10 3184
[17] Yu Z, Liang R, Chen P, Huang Q, Huang T and Xu X 2012 Plasmonics 7 603
[18] Lu H, Liu X, Mao D, Wang L and Gong Y 2010 Opt. Express 18 17922
[19] Haus H A and Huang W 1991 IEEE Xplore Digital Library 79 1505
[20] Li Q, Wang T, Su Y K, Yan M and Qiu M 2010 Opt. Express 18 8367
[21] Penz P A 1970 Phys. Rev. Lett. 24 1405
[22] Wu T S, Liu Y M, Yu Z Y, Peng Y W, Shu C G and Ye H 2014 Opt. Express 22 7669
[23] Tong L M, Wei H, Zhang S P and Xu H X 2014 Sensors 14 7959"
[1] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[2] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[3] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[4] Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
Ji-Yao Du(都继瑶), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(4): 047701.
[5] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[6] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[7] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[8] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[9] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[10] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[11] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[12] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[13] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[14] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[15] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
No Suggested Reading articles found!