Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057307    DOI: 10.1088/1674-1056/aca5fd
REVIEW Prev   Next  

Thermoelectric generators and their applications: Progress, challenges, and future prospects

Nassima Radouane1,2,†
1 UDSMM(EA 4476), MREI-1, Université du Littoral Côte d'Opale, Dunkerque 59140, France;
2 Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, University of Mohammed V, Agdal Rabat Avenue Ibn Battouta P. B. 1014, Morocco
Abstract  Our community currently deals with issues such as rising electricity costs, pollution, and global warming. Scientists work to improve energy harvesting-based power generators in order to reduce their impacts. The Seebeck effect has been used to illustrate the capacity of thermoelectric generators (TEGs) to directly convert thermal energy to electrical energy. They are also ecologically beneficial since they do not include chemical products, function quietly because they lack mechanical structures and/or moving components, and may be built using different fabrication technologies such as three-dimentional (3D) printing, silicon technology, and screen printing, etc. TEGs are also position-independent and have a long operational lifetime. TEGs can be integrated into bulk and flexible devices. This review gives further investigation of TEGs, beginning with a full discussion of their operating principle, kinds, materials utilized, figure of merit, and improvement approaches, which include various thermoelectric material arrangements and utilised technologies. This paper also discusses the use of TEGs in a variety of disciplines such as automobile and biomedical.
Keywords:  thermoelectric generator (TEG)      thermoelectric devices      figure of merit      flexible TEG      automotive exhaust TEG  
Received:  05 August 2022      Revised:  30 October 2022      Accepted manuscript online:  25 November 2022
PACS:  73.50.Lw (Thermoelectric effects)  
  85.80.Fi (Thermoelectric devices)  
Corresponding Authors:  Nassima Radouane     E-mail:  nassima.radouane@univ-littoral.fr

Cite this article: 

Nassima Radouane Thermoelectric generators and their applications: Progress, challenges, and future prospects 2023 Chin. Phys. B 32 057307

[1] Mustafa Omer A 2008 Renew. Sust. Energy Rev. 12 344
[2] Yang K, Zhang H, Song S, Yang F, Liu H, Zhao G, Zhang J and Yao B 2014 Energies 7 2123
[3] Jouhara H, Khordehgah N, Almahmoud S, Delpech B, Chauhan A and Tassou S A 2018 Therm. Sci. Eng. Prog. 6 268
[4] Ambrosi R, Williams H, Watkinson E, et al. 2019 European radioisotope thermoelectric generators (RTGs) and radioisotope heater units (RHUs) for space science and exploration (New York: Springer)
[5] Ostrufka A, Borba A, Spengler A and Astronautica T P A 2019 Experimental evaluation of thermoelectric generators for nanosatellites application (Amsterdam: Elsevier)
[6] Energy D R A 1991 Applications of nuclear-powered thermoelectric generators in space (Amsterdam: Elsevier)
[7] Vazquez J, Sanz-Bobi Ma, Palacios R and Arenas A 2002 7th Eur. Work. Thermoelectr. 17
[8] Tohidi F, Ghazanfari Holagh S and Chitsaz A 2022 Appl. Therm. Eng. 201 117793
[9] Jaziri N, Boughamoura A, Müller J, Mezghani B, Tounsi F and Ismail M 2020 Energy Rep. 6 264
[10] Champier D 2017 Energy Convers. Manag. 140 167
[11] Yang Y, Ma F Y, Lei C H, Liu Y Y and Li J Y 2013 J. Mech. Phys. Solids 61 1768
[12] Vedernikov M V and Iordanishvili E K 1998 International Conference on Thermoelectrics pp. 37-42
[13] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[14] Slack G 1995 New Materials and Performance Limits for Thermoelectric Cooling
[15] Du Y, Shen S Z, Cai K and Casey P S 2012 Prog. Polym. Sci. 37 820
[16] Yu J and Zhao H 2007 J. Power Sources 172 428
[17] Prijic A, Vracar L, Vuckovic D, Milic D and Prijic Z 2015 IEEE Sens. J. 15 337
[18] Owoyele O, Ferguson S and O'Connor B T 2015 Appl. Energy 147 184
[19] De Pasquale G 2013 Woodhead Publishing Series in Electronic and Optical Materials pp. 345-400
[20] Chen W H, Lin Y X, Wang X D and Lin Y L 2019 Appl. Energy 241 11
[21] Rowe D M 2006 Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC Press)
[22] Sharma P A and Sugar J D 2014 Front. Chem. 2
[23] Love N D, Szybist J P and Sluder C S 2012 Appl. Energy 89 322
[24] Wang T, Luan W, Wang W and Tu S T 2014 Appl. Energy 136 860
[25] Wang Y, Li S, Zhang Y, Yang X, Deng Y and Su C 2016 Energy Convers. Manag. 126 266
[26] Glatz W and Schwyter E 2009 unpublished
[27] Kao P H, Shih P J, Dai C L and Liu M C 2010 Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators 10 1315
[28] Qing S, Rezania A, Rosendahl L A, Enkeshafi A A and Gou X 2018 Energy Convers. Manag. 156 655
[29] Gierczak M G, Prociów E and Dziedzic A 2020 Microelectron. Int. 37 109
[30] Cho Y H, Park J, Chang N and Kim J 2020 Energies 13 3185
[31] Yuan Z, Ziouche K, Bougrioua Z, Lejeune P, Lasri T and Leclercq D 2015 Sens. Actuators A Phys. 221 67
[32] Yan J, Liao X, Ji S and Zhang S 2019 J. Microelectromech. Syst. 28 1
[33] Jaziri N, Boughamoura A, Müller J, Mezghani B, Tounsi F and Ismail M 2020 Energy Rep. 6 264
[34] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[35] Tian M W, Mihardjo L W W, Moria H, Asaadi S, Pourhedayat S, Sadighi Dizaji H and Makatar W H 2021 Appl. Therm. Eng. 184 116274
[36] Tian M W, Mihardjo L W W, Moria H, Asaadi S, Sadighi Dizaji H, Khalilarya S and Nguyen P T 2020 Appl. Therm. Eng. 181 115996
[37] Asaadi S, Khalilarya S and Jafarmadar S 2019 Appl. Therm. Eng. 156 371
[38] Schierning G, Chavez R, Schmechel R, Balke B, Rogl G and Rogl P 2015 Transl. Mater. Res. 2 025001
[39] Tan J, Huang H, Wang D, Qin S, Xiao X, Chen Z, Liu D and Wang L 2020 J. Mater. Chem. C 8 4827
[40] Wang X, Liang L, Lv H, Zhang Y and Chen G 2021 Nano Energy 90 106577
[41] Padmanabhan Ramesh V, Sargolzaeiaval Y, Neumann T, Misra V, Vashaee D, Dickey M D and Ozturk M C 2021 npj Flex. Electron. 5 5
[42] Rowe D M 2005 Thermoelectrics handbook: macro to nano (Boca Raton: CRC Press) 80 1014
[43] Min G and Technology D R S S 2007 Ring-structured thermoelectric module
[44] Schmitz A, Stiewe C and Müller E 2013 J. Electron. Mater. 42 1702
[45] Jovovic V 2015 Thermoelectric Waste Heat Recovery Program for Passenger Vehicles
[46] Zhang M, Wang J, Tian Y, Zhou Y, Zhang J, Xie H, Wu Z, Li W and Wang Y 2021 Energy Rep. 7 413
[47] He R, Schierning G and Nielsch K 2018 Adv. Mater. Technol. 3 1700256
[48] Uchida K, Ishida M and Kikkawa T 2014 unpublished
[49] Fateh H, Baker C and Hall M 2014 unpublished
[50] You H, Li Z, Shao Y, Yuan X, Liu W, Tang H, Zhang Q, Yan Y and Tang X 2022 Appl. Therm. Eng. 202 117818
[51] Han M and Wee D 2020 Int. J. Energy Res. 44 6049
[52] Kogo G, Xiao B, Danquah S, Lee H, Niyogushima J, Yarbrough K, Candadai A, Marconnet A, Pradhan S K and Bahoura M 2020 Sci. Rep. 10 1
[53] Mizoshiri M, Mikami M, Ozaki K and Kobayashi K 2012 J. Electron. Mater. 41 1713
[54] Slack G A 1995 unpublished
[55] Slack G A 1997 Materials Research Society Symposium - Proceedings 478 47
[56] Wei J, Yang L, Ma Z, Song P, Zhang M, Ma J, Yang F and Wang X 2020 J. Mater. Sci. 55 12642
[57] Liu Z Y, Zhu J L, Tong X, Niu S and Zhao W Y 2020 J. Adv. Ceram. 9 647
[58] Soleimani Z, Zoras S and Ceranic B 2020 unpublished
[59] Ma Z, Wei J, Song P, Zhang M and Yang L 2021 unpublished
[60] Wei J, Yang L, Ma Z, Song P and Zhang M 2020 unpublished
[61] Hasan M N, Wahid H, Nayan N and Mohamed Ali M S 2020 Int. J. Energy Res. 44 6170
[62] Gutiérrez Moreno J J, Cao J, Fronzi M and Assadi M H N 2020 Mater. Renew. Sustain. Energy 9
[63] Zheng J, Chen J, Tang Y, Shen K, He B, Shen L, Ge W, Yang P and Deng S 2022 J. Solid State Chem. 306 122754
[64] Fischer K F F, Bjerg J H, Jorgensen L R and Iversen B B 2021 ACS Appl. Mater. Interfaces 13 45708
[65] Perez C, Wood M, Ricci F and Yu G 2021 unpublished
[66] Jaishi D R, Sharma N, Karki B, Belbase B P, Adhikari R P and Ghimire M P 2021 AIP Adv. 11 025304
[67] Safavi M, Martin N, Aubry E, Linseis V, Billard A and Mohammad A P Y 2021 J. Mater. Eng. Perform. 30 4045
[68] Shiojiri D, Iida T, Kakio H, Yamaguchi M, Hirayama N and Imai Y 2022 J. Alloy. Compd. 891 161968
[69] Drymiotis F, Fleurial J, Bux S, Firdosy S, Start K and Chi I 2018 Development of high efficiency segmented thermoelectric couples for space applications
[70] Li J, Liu R, Song Q, Gao Z, Huang H, Zhang Q, Materialia X S A and 2021 unpublished
[71] Bharti M, Singh A, Samanta S and Aswal D K 2018 Prog. Mater. Sci. 93 270
[72] Paulraj I, Yang T S, Wang C H, Liu C J, Liang T F, Chen J L and Wang Y W 2021 ACS Appl. Mater. Interfaces
[73] Anno H, Nishinaka T, Hokazono M, Oshima N and Toshima N 2015 J. Electron. Mater. 44 2105
[74] Zhang Y X, Zhu Y K, Feng J and Ge Z H 2022 J. Alloy. Compd. 892 162035
[75] Jose R G, Ng H K, Kumar P, Suwardi A, Zheng M, Asbahi M, Tripathy S, Nandhakumar I, Saifullah M S M and Hippalgaonkar K 2020 ACS Appl. Mater. Interfaces 12 33647
[76] Mulla R, Jones D R and Dunnill C W 2020 ACS Sustain. Chem. Eng. 8 14234
[77] Bux S K, Fleurial J P and Kaner R B 2010 Chem. Commun. 46 8311
[78] Chen X, Chen J, You T, Wang K and Xu F 2015 Carbohydr. Polym. 125 85
[79] Zainal S H, Mohd N H, Suhaili N, Anuar F H, Lazim A M and Othaman R 2021 J. Mater. Res. Technol. 10 935
[80] Cheng H, Du Y, Wang B, Mao Z, Xu H, Zhang L, Zhong Y, Jiang W, Wang L and Sui X 2018 Chem. Eng. J. 338 1
[81] Dong Z, Liu H, Yang X, Fan J, Bi H, Wang C, Zhang Y, Luo C, Chen X and Wu X 2021 npj Flex. Electron. 5 6
[82] Peers S, Montembault A and Ladaviére C 2020 J. Control. Release 326 150
[83] Jang E, Banerjee P, Huang J, Holley R, Gaskins J T, Hoque M S B, Hopkins P E and Madan D 2020 Electronics 9 532
[84] Goodman C H L 1958 J. Phys. Chem. Solids 6 305
[85] Ioffe A F 1957 Semiconductor thermoelements and thermoelectric cooling
[86] Slack G 1995 New Materials and Performance Limits for Thermoelectric Cooling (Boca Raton: CRC Press)
[87] Goldsmid H J and Douglas R W 1954 Br. J. Appl. Phys. 5 386
[88] Böttner H 2002 International Conference on Thermoelectrics 2002 pp. 511-8
[89] Böttner H 2005 International Conference on Thermoelectrics 2005 pp. 1-8
[90] Nurnus J, Böttner H, Nurnus J, Schubert A and Volkert F 2007 ieeexplore.ieee.org
[91] Siouane S, Jovanovic S and Poure P 2018 Energies 11 1369
[92] Elyamny S, Dimaggio E, Magagna S, Narducci D and Pennelli G 2020 Nano Lett. 20 4748
[93] Elyamny S, Dimaggio E, Magagna S, et al. 2020 unpublished
[94] Won Park J, Sun Kim C, Choi H, Jun Kim Y, Soup Lee G, Jin Cho B, Park J W, Kim C S, Choi H, Kim Y J, Lee G S and Cho B J 2020 Wiley Online Library 5
[95] Shimizu Y, Mizoshiri M and Mikami M 2018 unpublished
[96] Farahani R D, Dubé M and Therriault D 2016 Adv. Mater. 28 5794
[97] Kim F, Kwon B, Eom Y, Lee J E, Park S, Jo S, Park S H, Kim B S, Im H J, Lee M H, Min T S, Kim K T, Chae H G, King W P and Son J S 2018 Nat. Energy 3 301
[98] Qiu J, Yan Y, Luo T, Tang K, Yao L, Zhang J, Zhang M, Su X, Tan G, Xie H, Kanatzidis M G, Uher C and Tang X 2019 Energy Environ. Sci. 12 3106
[99] Burton M R, Mehraban S, Beynon D, McGettrick J, Watson T, Lavery N P and Carnie M J 2019 Adv. Energy Mater. 9 1900201
[100] Hardin J O, Ober T J, Valentine A D and Lewis J A 2015 Adv. Mater. 27 3279
[101] Yuan Z, Tang X, Liu Y, Xu Z, Liu K, Li J, Zhang Z and Wang H 2019 J. Power Sources 414 509
[102] Zhao X, Han W, Zhao C, Wang S, Kong F, Ji X, Li Z and Shen X 2019 ACS Appl. Mater. Interfaces 11 10301
[103] Yang S E, Kim F, Ejaz F, Lee G S, Ju H, Choo S, Lee J, Kim G, Jung S H, Ahn S, Chae H G, Kim K T, Kwon B and Son J S 2021 Nano Energy 81 105638
[104] Yang S, Qiu P, Chen L and Shi X 2021 Small Sci. 1 2100005
[105] Yang S, Cho K, Park Y and Kim S 2018 Nano Energy 49 333
[106] Oh J Y, Lee J H, Han S W, Chae S S, Bae E J, Kang Y H, Choi W J, Cho S Y, Lee J O, Baik H K and Lee T I 2016 Energy Environ. Sci. 9 1696
[107] Shen H, Lee H and Han S 2021 Curr. Appl. Phys. 22 6
[108] Boudouris B W, Yee S K, Appl J, Orrill M, LeBlanc S, Gordon M P, Zaia E W, Zhou P, Russ B, Coates N E, Sahu A, Urban J J, Culebras M, de Lima J M M, Gómez C, Cantarero A, Menon A K, Uzunlar E, Wolfe R M, Reynolds J R, Marder S R, Appl P J, Fang H, Popere B C, Thomas E M, Mai C K, Chang W B, Bazan G C, Chabinyc M L, Segalman R A, Meek O, Eng A J and Yee S K 2017 J. Appl. Polym. Sci. 134 44456
[109] Arthur C and Guyton J E H 2006 Textbook of Medical Physiology
[110] Gagge A P and Gonzalez R R 1996 Mechanisms of Heat Exchange: Biophysics and Physiology Comprehensive Physiology (Hoboken: Wiley) pp. 45-84
[111] Greg K 2007 Altern. Med. Rev. 11 278
[112] Gagge A P, Stolwijk J A J and Hardy J D 1967 Environ. Res. 1 1
[113] Saggin B, Tarabini M and Lanfranchi G 2012 IEEE Trans. Instrum. Meas. 61 489
[114] Kim T K 2017 J. Mech. Sci. Technol. 31 4011
[115] Gagge A P and Nishi Y 1977 Heat Exchange Between Human Skin Surface and Thermal Environment Comprehensive Physiology (Hoboken: Wiley) pp. 69-92
[116] Park H, Eom Y, Lee D, Kim J, Kim H, Park G and Kim W 2019 Energy 187 115935
[117] Leonov V 2011 ISRN Renewabl. Energy 2011 1
[118] Leonov R J M V 2007 Proc. 5th Eur. Conf. Thermoelectr.
[119] Kumar P M, Babu V J, Subramanian A, Bandla A, Thakor N, Ramakrishna S and Wei H 2019 Designs 3 22
[120] Karthikeyan V, Surjadi J U, Wong J C K, Kannan V, Lam K H, Chen X, Lu Y and Roy V A L 2020 J. Power Sources 455 227983
[121] On J Y I 2005 unpublished
[122] Tang Z, Deng Y and Su C 2015 unpublished
[123] Shen Z G, Tian L L and Liu X 2019 Energy Convers. Manag. 195 1138
[124] Crane D, Lagrandeur J, Jovovic V, Ranalli M, Adldinger M, Poliquin E, Dean J, Kossakovski D, Mazar B and Maranville C 2013 J. Electron. Mater. 42 1582
[125] Meisner G 2011 Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery
[126] Sivaprahasam D, Harish S, Gopalan R and Sundararajan G 2018 Bringing Thermoelectricity into Reality
[127] Kim S K, Won B C, Rhi S H, Kim S H, Yoo J H and Jang J C 2011 J. Electron. Mater. 40 778
[128] Yang H, Shu G, Tian H, Ma X, Chen T and Liu P 2018 Appl. Therm. Eng. 144 628
[129] Brito F P, Alves A, Pires J M, Martins L B, Martins J, Oliveira J, Teixeira J, Goncalves L M and Hall M J 2015 J. Electron. Mater. 45 1846
[130] Pablo F Y, Armas O, Capetillo A and Martínez S 2018 Appl. Energy 226 690
[131] Kim T Y, Kwak J and Kim B W 2018 Energy Convers. Manag. 160 14
[132] Cao Q, Luan W and Wang T 2018 Appl. Therm. Eng. 130 1472
[133] Espinosa N, Lazard M, Aixala L and Scherrer H 2010 J. Electron. Mater. 39 1446
[134] Zhang Y, Cleary M, Wang X, Kempf N, Schoensee L, Yang J, Joshi G and Meda L 2015 Energy Convers. Manag. 105 946
[135] Quan R, Liang W, Quan S, Huang Z, Liu Z, Chang Y and Tan B 2022 Appl. Therm. Eng. 216 119055
[136] Samson D, Kluge M, Becker T and Schmid U 2011 Sensors Actuators A Phys. 172 240
[137] Huang J 2009 Aerospace and Aircraft Thermoelectric Applications
[138] Kousksou T, Bédécarrats J P, Champier D, Pignolet P and Brillet C 2011 J. Power Sources 196 4026
[139] Choi J, Dun C, Forsythe C, Gordon M P and Urban J J 2021 pubs.rsc.org
[140] Tzounis L 2019 Nanomaterials Synthesis: Design, Fabrication and Applications (Amsterdam: Elsevier) pp. 295-336
[141] Maxa J, Novikov A and Nowottnick M 2018 EMPC 2017-21st European Microelectronics and Packaging Conference and Exhibition pp. 1-9
[142] Chen Z, Guo X, Zhang F, Shi Q, Tang M and Ang R 2020 J. Mater. Chem. A 8 16790
[143] Chen Z, Wang R, Wang G, Zhou X, Wang Z, Yin C, Hu Q, Zhou B, Tang J and Ang R 2018 Chin. Phys. B 27 047202
[144] Zhong Y, Tang J, Liu H, Chen Z, Lin L, Ren D, Liu B and Ang R 2020 ACS Appl. Mater. Interfaces
[145] Haras M and Skotnicki T 2018 Nano Energy 54 461
[146] Zaia E W, Gordon M P, Yuan P and Urban J J 2019 Adv. Electron. Mater. 5 1800823
[147] Wang J, Xiao F and Zhao H 2021 Renew. Sust. Energy Rev. 151 111522
[148] Tiwari S K, Pandey R, Wang N, Kumar V, Sunday O J, Bystrzejewski M, Zhu Y and Mishra Y K 2022 Adv. Sci. 9 2105770
[1] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[2] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[3] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[4] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[5] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[6] Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3
Q Mahmood, N A Noor, T Ghrib, Nessrin A Kattan, Asif Mahmood, and Shahid M Ramay. Chin. Phys. B, 2020, 29(11): 117305.
[7] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[8] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[9] Thermoelectric properties of two-dimensional hexagonal indium-VA
Jing-Yun Bi(毕京云), Li-Hong Han(韩利红), Qian Wang(王倩), Li-Yuan Wu(伍力源), Ruge Quhe(屈贺如歌), Peng-Fei Lu(芦鹏飞). Chin. Phys. B, 2018, 27(2): 026802.
[10] Impact of coupling geometry on thermoelectric properties of oligophenyl-base transistor
S Ramezani Akbarabadi, H Rahimpour Soleimani, M Bagheri Tagani, Z Golsanamlou. Chin. Phys. B, 2017, 26(2): 027303.
[11] Performance analysis of surface plasmon resonance sensor with high-order absentee layer
Qing-Qing Meng(孟庆卿), Xin Zhao(赵鑫), Shu-Jing Chen(陈淑静), Cheng-You Lin(林承友), Ying-Chun Ding(丁迎春), Zhao-Yang Chen(陈朝阳). Chin. Phys. B, 2017, 26(12): 124213.
[12] Performance of thermoelectric generator with graphene nanofluid cooling
Jiao-jiao Xing(邢姣娇), Zi-hua Wu(吴子华), Hua-qing Xie(谢华清), Yuan-yuan Wang(王元元), Yi-huai Li(李奕怀), Jian-hui Mao(毛建辉). Chin. Phys. B, 2017, 26(10): 104401.
[13] Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions
Li Yi (李宜), Liu Jian (刘剑), Wang Chun-Lei (王春雷), Su Wen-Bin (苏文斌), Zhu Yuan-Hu (祝元虎), Li Ji-Chao (李吉超), Mei Liang-Mo (梅良模). Chin. Phys. B, 2015, 24(4): 047201.
[14] Multifunctional disk device for optical switch and temperature sensor
Bian Zhen-Yu (卞振宇), Liang Rui-Sheng (梁瑞生), Zhang Yu-Jing (张郁靖), Yi Li-Xuan (易丽璇), Lai Gen (赖根), Zhao Rui-Tong (赵瑞通). Chin. Phys. B, 2015, 24(10): 107801.
[15] A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film
Zhang Zu-Yin (张祖银), Wang Li-Na (王立娜), Hu Hai-Feng (胡海峰), Li Kang-Wen (李康文), Ma Xun-Peng (马勋鹏), Song Guo-Feng (宋国峰). Chin. Phys. B, 2013, 22(10): 104213.
No Suggested Reading articles found!