Special Issue:
SPECIAL TOPIC — Optical field manipulation
|
TOPICAL REVIEW—Optical field manipulation |
Prev
Next
|
|
|
Photonic-plasmonic hybrid microcavities: Physics and applications |
Hongyu Zhang(张红钰)1, Wen Zhao(赵闻)1,3, Yaotian Liu(刘耀天)1, Jiali Chen(陈佳丽)1, Xinyue Wang(王欣月)1, and Cuicui Lu(路翠翠)1,2,† |
1 Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China; 2 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China; 3 School of Physical Engineering, Qufu Normal University, Qufu 273165, China |
|
|
Abstract Photonic-plasmonic hybrid microcavities, which possess a higher figure of merit Q/V (the ratio of quality factor to mode volume) than that of pure photonic microcavities or pure plasmonic nano-antennas, play key roles in enhancing light-matter interaction. In this review, we summarize the typical photonic-plasmonic hybrid microcavities, such as photonic crystal microcavities combined with plasmonic nano-antenna, whispering gallery mode microcavities combined with plasmonic nano-antenna, and Fabry-Perot microcavities with plasmonic nano-antenna. The physics and applications of each hybrid photonic-plasmonic system are illustrated. The recent developments of topological photonic crystal microcavities and topological hybrid nano-cavities are also introduced, which demonstrates that topological microcavities can provide a robust platform for the realization of nanophotonic devices. This review can bring comprehensive physical insights of the hybrid system, and reveal that the hybrid system is a good platform for realizing strong light-matter interaction.
|
Received: 27 April 2021
Revised: 21 June 2021
Accepted manuscript online: 23 June 2021
|
PACS:
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
42.70.Qs
|
(Photonic bandgap materials)
|
|
42.55.Sa
|
(Microcavity and microdisk lasers)
|
|
61.46.Bc
|
(Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91850117 and 11654003) and Beijing Institute of Technology Research Fund Program for Young Scholars. |
Corresponding Authors:
Cuicui Lu
E-mail: cuicuilu@bit.edu.cn
|
Cite this article:
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠) Photonic-plasmonic hybrid microcavities: Physics and applications 2021 Chin. Phys. B 30 117801
|
[1] Liu N, Gocalinska A, Justice J, Gity F, Povey I, McCarthy B, Pemble M, Pelucchi E, Wei H, Silien C, Xu H X and Corbett B 2016 Nano Lett. 16 7822 [2] Mauranyapin N P, Madsen L S, Taylor M A, Waleed M and Bowen W P 2017 Nat Photonics. 11 477 [3] Liang F, Guo Y Z, Hou S C and Quan Q M 2017 Sci Adv. 3 e1602991 [4] Yang D Q, Wang A Q, Chen J H, Yu X C, Lan C W, Ji Y F and Xiao Y F 2020 Photonics Res. 8 497 [5] Jana S, Xu X Z, Klymchenko A, Reisch A and Pons T 2021 ACS Nano. 15 1445 [6] Xu P, He X D, Wang J and Zhan M S 2010 Opt. Lett. 35 2164 [7] Chen Y J, Zigo S and Raithel G 2014 Phys Rev A. 89 063409 [8] Quy H Q, Tuan D Q, Thanh T D and Thang N M 2018 Opt. Commun. 427 341 [9] Sesin P, Anguiano S, Bruchhausen A E, Lemaȋtre A and Fainstein A 2021 Phys. Rev. B. 103 L081301 [10] Reithmaier J P, Sek G, Loffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature 432 197 [11] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200 [12] Faraon A, Fushman I, Englund D, Stoltz N, Petroff P and Vuckovic J 2008 Nat. Phys. 4 859 [13] Nomura M, Kumagai N, Iwamoto S, Ota Y and Arakawa Y 2010 Nat. Phys. 6 279 [14] van der Marel N, van Dishoeck E F, Bruderer S, Birnstiel T, Pinilla P, Dullemond C P, van Kempen T A, Schmalzl M, Brown J M, Herczeg G J, Mathews G S and Geers V 2013 Science 340 1202 [15] Bose R, Cai T, Choudhury K R, Solomon G S and Waks E 2014 Nat. Photon. 8 858 [16] Chow W W, Jahnke F and Gies C 2014 Light Sci. Appl. 3 e201 [17] Li J, Lin Y, Lu J F, Xu C X, Wang Y Y, Shi Z L and Dai J 2015 ACS Nano. 9 6794 [18] Zhang W, Peng L, Liu J, Tang A, Hu J S, Yao J N and Zhao Y S 2016 Adv. Mater. 28 4040 [19] Kreinberg S, Chow W W, Wolters J, Schneider C, Gies C, Jahnke F, Höfling S, Kamp M and Reitzenstein S 2017 Light Sci. Appl. 6 e17030 [20] Gong Y K, Wong S H, Bennett A J, Huffaker D L and Oh S S 2020 ACS Photon. 7 2089 [21] Zhang J, Li J X, Tang S W, Fang Y F, Wang J, Huang G S, Liu R, Zheng L, Cui X G and Mei Y F 2015 Sci. Rep. 5 15012 [22] Garaei M A, Saliminasab M, Nadgaran H and Moradian R 2017 Plasmonics 12 1953 [23] Huang Q L and Cunningham B T 2019 Nano Lett. 19 5297 [24] Xin K, Shi X F, Liu Y, Zhang Z M, Jia W J and Ma J 2020 Opt. Express. 28 8734 [25] Vahala K J 2003 Nature 424 839 [26] Yamamoto T, Pashkin Y A, Astafiev O, Nakamura Y and Tsai J S 2003 Nature 425 941 [27] Akahane Y, Asano T, Song B S and Noda S 2005 Opt. Express 13 1202 [28] Maeno K, Takahashi Y, Nakamura T, Asano T and Noda S 2017 Opt. Express 25 367 [29] Asano T, Ochi Y, Takahashi Y, Kishimoto K and Noda S 2017 Opt. Express 25 1769 [30] Asano T and Noda S 2018 Opt. Express 26 32704 [31] Spillane S M, Kippenberg T J and Vahala K J 2002 Nature 415 621 [32] Armani D K, Kippenberg T J, Spillane S M and Vahala K J 2003 Nature 421 925 [33] Kippenberg T J, Spillane S M and Vahala K J 2004 Phys. Rev. Lett. 93 83904 [34] Flatae A M, Burresi M, Zeng H, Nocentini S, Wiegele S, Parmeggiani C, Kalt H and Wiersma D 2015 Light Sci. Appl. 4 e282 [35] Chen Y L, Jin W L, Xiao Y F and Zhang X M 2016 Phys. Rev. Appl. 6 044021 [36] Murphy R M J, Lei F, Ward J M, Yang Y and Chormaic S N 2017 Opt. Express 25 13101 [37] Lippolis D, Wang L and Xiao Y F 2017 Phys. Rev. E 96 12217 [38] Huang S H, Jiang X, Peng B, Janisch C, Cocking A, Özdemir Ş K, Liu Z and Yang L 2018 Photonics Res. 6 346 [39] Gorodetsky M L, Savchenkov A A and Ilchenko V S 1996 Opt. Lett. 21 453 [40] Vernooy D W, Ilchenko V S, Mabuchi H, Streed E W and Kimble H J 1997 Opt. Lett. 23 247 [41] Burek M J, Chu Y W, Liddy M S Z, Patel P, Rochman J, Meesala S, Hong W, Quan Q M, Lukin M D and Lončar M 2014 Nat. Commun. 5 5718 [42] Taverne M P C, Ho Y D, Zheng X, Chen L, Fang C N and Rarity J 2018 Opt. Lett. 43 5202 [43] Caiyang W N, Jiang P, Qin Y, Mao S Q, Cao B, Gui F J and Yang H J 2019 Opt. Express 27 4176 [44] Cheng W, Han Z, Du Y and Qin J 2019 Opt. Express 27 16071 [45] Moczał a-Dusanowska M, Dusanowski Ł, Iff O, Huber T, Kuhn S, Czyszanowski T, Schneider C and Höfling S 2020 ACS Photon. 7 3474 [46] Asano T and Noda S 2018 Opt. Express 26 32704 [47] Lin Y C, Chou S H and Hsueh W J 2020 Sci. Rep. 10 1 [48] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824 [49] Hutter E and Fendler J H 2004 Adv. Mater. 16 1685 [50] Willets K A and Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267 [51] Khatua S, Paulo P M R, Yuan H, Gupta A, Zijlstra P and Orrit M 2014 ACS Nano 8 4440 [52] Ayala-Orozco C, Liu J G, Knight M W, Wang Y, Day J K, Nordlander P and Halas N J 2014 Nano Lett. 14 2926 [53] Pelton M 2015 Nat. Photon. 9 427 [54] Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O and Baumberg J J 2016 Nature 535 127 [55] Holsteen A L, Raza S, Fan P, Kik P G and Brongersma M L 2017 Science 358 1407 [56] Kuttge M, Garcia De Abajo F J and Polman A 2010 Nano Lett. 10 1537 [57] Russell K J, Liu T, Cui S Y and Hu E L 2012 Nat. Photon. 6 459 [58] Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O and Baumberg J J 2016 Nature 535 127 [59] Hoang T B, Akselrod G M and Mikkelsen M H 2015 Nano Lett. 16 270 [60] Xiao Y F, Liu Y C, Li B B, Chen Y L, Li Y and Gong Q H 2012 Phys. Rev. A 85 031805 [61] Liu Y C, Luan X S, Li H K, Gong Q H, Wong C W and Xiao Y F 2014 Phys. Rev. Lett. 112 213602 [62] Doeleman H M, Verhagen E and Koenderink A F 2016 ACS Photon. 3 1943 [63] Peng P, Liu Y C, Xu D, Cao Q T, Lu G W, Gong Q H and Xiao Y F 2017 Phys. Rev. Lett. 119 233901 [64] Zhu G X and Liao Q G 2018 Opt. Express 26 31391 [65] Zhang H Y, Liu Y C, Wang C Y, Zhang N E and Lu C C 2020 Opt. Lett. 45 4794 [66] Cognée K G, Doeleman H M, Lalanne P and Koenderink A F 2019 Light Sci. Appl. 8 115 [67] Barth M, Schietinger S, Fischer S, Becker J, Nusse N, Aichele T, Lochel B, Sonnichsen C and Benson O 2010 Nano Lett. 10 891 [68] Gurlek B, Sandoghdar V and Martin-Cano D 2018 ACS Photon. 5 456 [69] Conteduca D, Reardon C, Scullion M G, Dell' Olio F, Armenise M N, Krauss T F and Ciminelli 2017 APL Photon. 2 086101 [70] Zhang T P, Callard S, Jamois C, Chevalier C, Feng D and Belarouci A 2014 Nanotechnology 25 315201 [71] Conteduca D, Dell Olio F, Innone F, Ciminelli C and Armenise M N 2016 Opt. Laser Technol. 77 151 [72] Franke S, Hughes S, Dezfouli M K, Kristensen P T, Busch K, Knorr A and Richter M 2019 Phys. Rev. Lett. 122 213901 [73] Doeleman H M, Dieleman C D, Mennes C, Ehrler B and Koenderink A F 2020 ACS Nano. 14 12027 [74] Gérard J, Sermage B, Gayral B, Legrand B, Costard E and Thierry-Mieg V 1998 Phys. Rev. Lett. 81 1110 [75] Hood C J, Lynn T W, Doherty A C, Parkins A S and Kimble H J 2000 Science 287 1447 [76] Qiao Q, Xia J, Lee C, and Zhou G 2018 Micromachines-Basel 9 541 [77] Ward J and Benson O 2011 Laser Photonics Rev. 5 553 [78] Youcef Mahmoud M, Bassou G, Taalbi A and Chekroun Z M 2012 Opt. Commun. 285 368 [79] Liu L, Liao S, Xue W and Yue J 2020 Opt. Express 28 6918 [80] Rokhsari H and Vahala K J 2004 Phys. Rev. Lett. 92 253901 [81] Chow E, Grot A, Mirkarimi L W, Sigalas M and Girolami G 2004 Opt. Lett. 29 1093 [82] Yang D Q and Zhang X 2019 Opt. Commun. 435 11 [83] Kassa-Baghdouche L and Cassan E 2020 Opt. Quant. Electron. 52 260 [84] Vollmer F, Arnold S and Keng D 2008 Proc. Natl. Acad. Sci. USA 105 20701 [85] He L N, Özdemir Ş K, Zhu J G, Kim W and Yang L 2011 Nat. Nanotechnol. 6 428 [86] Shao L B, Jiang X F, Yu X C, Li B B, Clements W R, Vollmer F, Wang W, Xiao Y F and Gong Q H 2013 Adv. Mater. 25 5616 [87] Dong C H, He L, Xiao Y F, Gaddam V R, Ozdemir S K, Han Z F, Guo G C and Yang L 2009 Appl. Phys. Lett. 94 231119 [88] Ioppolo T and Volkan Ötugen M 2007 J. Opt. Soc. Am. B 24 2721 [89] Loncar M, Yoshie T and Scherer A 2002 Appl. Phys. Lett. 81 2680 [90] Ee H S, Jeong K Y, Seo M K, Lee Y H and Park H G 2008 Appl. Phys. Lett. 93 11104 [91] Nomura M, Ota Y, Kumagai N, Iwamoto S and Arakawa Y 2010 Appl. Phys. Lett. 97 191108 [92] Athanasiou M, Smith R, Liu B and Wang T 2015 Sci. Rep. 4 7250 [93] Guo J Q, Song G, Huang Y, Liang K, Wu F, Jiao R Z and Yu L 2021 ACS Photon. 8 901 [94] Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu E L and Imamoğlu A 2007 Nature 445 896 [95] Ota Y, Iwamoto S, Kumagai N and Arakawa Y 2011 Phys. Rev. Lett. 107 233602 [96] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565 [97] Aram M H and Khorasani S 2015 J. Mod. Phys. 6 1467 [98] Noda S and Baba T 2003 Roadmap on Photonic Crystals (Boston: Springer) p. 13 [99] Foresi J S, Villeneuve P R, Ferrera J, Thoen E R, Steinmeyer G, Fan S, Joannopoulos J D, Kimerling L C, Smith H I and Ippen E P 1997 Nature 390 143 [100] Sekoguchi H, Takahashi Y, Asano T and Noda S 2014 Opt. Express 22 916 [101] Asano T, Ochi Y, Takahashi Y, Kishimoto K and Noda S 2017 Opt. Express 25 1769 [102] Asano T and Noda S 2018 Opt. Express 26 32704 [103] Wang W H and Zhang N 2018 Acta Phys. Sin. 67 247302 (in Chinese) [104] Dousse A, Suffczyński J, Beveratos A, Krebs O, Lemaȋtre A, Sagnes I, Bloch J, Voisin P and Senellart P 2010 Nature 466 217 [105] Törmä P and Barnes W L 2014 Rep. Prog. Phys. 78 13901 [106] Xu D, Xiong X, Lin W, Ren X F, Png C E, Guo G C, Gong Q H and Xiao Y F 2018 Adv. Opt. Photon. 10 703 [107] Zhou Z K, Liu J F, Bao Y J, Wu L, Png C E, Wang X H and Qiu C W 2019 Prog. Quant. Eletron. 65 1 [108] Genevet P, Tetienne J, Gatzogiannis E, Blanchard R, Kats M A, Scully M O and Capasso F 2010 Nano Lett. 10 4880 [109] Harutyunyan H, Volpe G, Quidant R and Novotny L 2012 Phys. Rev. Lett. 108 217403 [110] Yang X Y, Hu X Y, Yang H and Gong Q H 2017 Nanophotonics 6 365 [111] Xie J Y, Niu X X, Hu X Y, Wang F F, Chai Z, Yang H and Gong Q H 2017 Nanophotonics 6 1161 [112] Xu H F, Zhu Z M, Xue J C, Zhan Q Q, Zhou Z K and Wang X H 2021 Photon. Res. 9 395 [113] Zengin G, Wersäll M, Nilsson S, Antosiewicz T J, Käll M and Shegai T 2015 Phys. Rev. Lett. 114 157401 [114] Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J and Wang X H 2017 Phys. Rev. Lett. 118 237401 [115] Wang B, Zeng X Z and Li Z Y 2020 Photonics Res. 8 343 [116] Liu J N, Huang Q L, Liu K K, Singamaneni S and Cunningham B T 2017 Nano Lett. 17 7569 [117] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392 [118] Mabuchi H and Doherty A C 2002 Science 298 1372 [119] Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902 [120] Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D and Kimble H J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S551 [121] Yao W, Liu R B and Sham L J 2005 Phys. Rev. Lett. 95 30504 [122] Khitrova G, Gibbs H M, Kira M, Koch S W and Scherer A 2006 Nat. Phys. 2 81 [123] Pellizzari T, Gardiner S A, Cirac J I and Zoller P 1995 Phys. Rev. Lett. 75 3788 [124] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221 [125] Shore B W and Knight P L 1993 J. Mod. Opt. 40 1195 [126] Purcell E M 1946 Phys. Rev. 69 681 [127] Ota Y, Katsumi R, Watanabe K, Iwamoto S and Arakawa Y 2018 Commun. Phys. 1 86 [128] Han C, Lee M, Callard S, Seassal C and Jeon H 2019 Light-Sci. Appl. 8 40 [129] Xie X, Zhang W X, He X W, Wu S Y, Dang J C, Peng K, Song F L, Yang L L, Ni H Q, Niu Z C, Wang C, Jin K J, Zhang X D and Xu X L 2020 Laser Photonics Rev. 14 1900425 [130] Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N and Khajavikhan M 2018 Science 359 eaar4005 [131] Zhang W X, Xie X, Hao H M, Dang J C, Xiao S, Shi S S, Ni H Q, Niu Z C, Wang C, Jin K J, Zhang X D and Xu X L 2020 Light-Sci. Appl. 9 109 [132] Ao Y T, Hu X Y, You Y L, Lu C C, Fu Y L, Wang X Y and Gong Q H 2020 Phys. Rev. Lett. 125 013902 [133] Lu C C, Wang C Y, Xiao M, Zhang Z Q and C T Chan 2021 Phys. Rev. Lett. 126 113902 [134] Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H and Chen Y F 2018 Phys. Rev. B 98 205147 [135] Chen X D, Deng W M, Shi F L, Zhao F L, Chen M and Dong J W 2019 Phys. Rev. Lett. 122 233902 [136] Chen Y F, Meng F, Li G Y and Huang X D 2019 Acta Mater. 164 377 [137] Ota Y, Liu F, Katsumi R, Watanabe K and Wakabayashi K 2019 Optica 6 786 [138] Kim M and Rho J 2020 Nanophotonics 9 3227 [139] Qian Z, Li Z, Hao H, Shan L, Zhang Q, Dong J, Gong Q and Gu Y 2021 Phys. Rev. Lett. 126 23901 [140] Zhang H Y, Zheng Y J, Yu Z M, Hu X Y and Lu C C 2021 J. Opt. (Accepted) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|