Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 124213    DOI: 10.1088/1674-1056/26/12/124213
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Performance analysis of surface plasmon resonance sensor with high-order absentee layer

Qing-Qing Meng(孟庆卿)1, Xin Zhao(赵鑫)1, Shu-Jing Chen(陈淑静)2, Cheng-You Lin(林承友)1, Ying-Chun Ding(丁迎春)1, Zhao-Yang Chen(陈朝阳)1
1. College of Science, Beijing University of Chemical Technology, Beijing 100029, China;
2. Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Abstract  A surface plasmon resonance (SPR) sensor with a high-order absentee layer on the top of metallic film is proposed. The performance of the SPR sensor with NaCl, MgO, TiO2 or AlAs high-order absentee layer is analyzed theoretically. The results indicate that the sensitivity and the full width at half maximum of those SPR sensors decrease with the increasing of the order of absentee layer, but the variation of the figure of merit (FOM) depends on the refractive index of absentee layer. By improving the order of absentee layer with high-refractive-index, the FOM of the SPR sensor can be enhanced. The maximum value of FOM for the SPR sensor with high-order TiO2 (or AlAs) absentee layer is 1.059% (or 2.587%) higher than the one with one-order absentee layer. It is believed the proposed SPR sensor with high-order absentee layer will be helpful for developing the high-performance SPR sensors.
Keywords:  surface plasmon resonance sensor      high-order absentee layer      figure of merit  
Received:  03 July 2017      Revised:  17 August 2017      Accepted manuscript online: 
PACS:  42.81.Pa (Sensors, gyros)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  07.60.-j (Optical instruments and equipment)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11547183 and 11547241), the Higher Education and High-quality and World-class Universities, China (Grant No. PY201612), the National Key Research and Development Program of China (Grant No. 2016YFB0302003), and the Natural Science Foundation of Beijing (Grant No. 2162033).
Corresponding Authors:  Cheng-You Lin, Cheng-You Lin     E-mail:  cylin@mail.buct.edu.cn;chenzy@mail.buct.edu.cn

Cite this article: 

Qing-Qing Meng(孟庆卿), Xin Zhao(赵鑫), Shu-Jing Chen(陈淑静), Cheng-You Lin(林承友), Ying-Chun Ding(丁迎春), Zhao-Yang Chen(陈朝阳) Performance analysis of surface plasmon resonance sensor with high-order absentee layer 2017 Chin. Phys. B 26 124213

[1] Verma R, Gupta B D and Jha R 2011 Sens. Actuators B 160 623
[2] Mohanty G, Akhtar J and Sahoo B K 2016 Plasmonics 11 189
[3] Zhang Q Y, Zeng J, Li J F, Zhou Y B, Zhang X H and Cao H D 2014 Acta Phys. Sin. 63 034207(in Chinese)
[4] Chen L, Xu N N, Singh L, Cui T J, Singh R, Zhu Y M and Zhang W L 2017 Adv. Opt. Mater. 5 1600960
[5] Chen L, Zhu Y M, Zhang D W, Cao Z Q and Zhuang S L 2009 Chin. Phys. B 18 4875
[6] Chen L, Wei Y M, Zang X F, Zhu Y M and Zhuang S L 2016 Sci. Rep. 6 27324
[7] Zhao X H, Su Y C, Tsai W H, Wang CH, Chuang T L, Lin C W, Tsao Y C and Wu M S 2015 Opt. Commun. 335 32
[8] Das R, Srivastava T and Jha R 2015 Sens. Actuators B 206 443
[9] Bao M, Li G, Jiang D M, Cheng W J and Ma X M 2012 Appl. Phys. A 107 279
[10] Abbas A, Linman M J and Cheng Q 2011 Sens. Actuators B 156 169
[11] Lan G Q, Liu S G, Ma Y, Zhang X R, Wang Y X and Song Y L 2015 Opt. Commun. 352 49
[12] Shalabney A and Abdulhalim I 2010 Sens. Actuators A 159 24
[13] Lahav A, Auslender M and Abdulhalim I 2008 Opt. Lett. 33 2539
[14] Verma A, Prakash A and Tripathi R 2015 Opt. Commun. 357 106
[15] Zhang Q Y, Zeng J, Li J F, Zhou Y B, Zhang X H and Cao H D 2014 Acta Phys. Sin. 63 034207(in Chinese)
[16] Ghosh S and Ray M 2014 Sens. Actuators B 205 298
[17] Verma A, Prakash A and Tripathi R 2016 Optik 127 1787
[18] Nenninger G G, Tobiška P, Homola J and Yee S S 2001 Sens. Actuators B 74 145
[19] Shalabney A and Abdulhalim I 2012 Opt. Lett. 37 1175
[20] Sang T, Wang Y K, Li J L, Zhou J Y, Jiang W W, Wang J C and Chen G Q 2017 Opt. Commun. 382 138
[21] Shin D, Liu Z S and Magnusson R 2002 Opt. Lett. 27 1288
[22] Chen Z Y, Zhao X, Lin C Y, Chen S J, Yin L and Ding Y C 2016 Appl. Opt. 55 6832
[23] Wu W J, Zhu J T, Wang Z S, Zhang Z, Wang F L, Wang H C, Zhang S M, Xu Y, Cheng X S, Wang B, Li C X, Wu Y R, Qin S J, Chen L Y, Zhou H J and Huo T L 2006 Chin. Phys. Lett. 23 2534
[24] Maharana P K, Jha R and Palei S 2014 Sens. Actuators B 190 494
[25] Sharma N K, Yadav S and Sajal V 2014 Opt. Commun. 318 74
[26] Palik E D 1998 Handbook of optical constants of solids (San Diego:Academic Press) pp. 775-793
[27] Benkabou F and Chikhi M 2014 Phys. Status Solidi A 211 700
[28] Lahav A, Shalabaney A and Abdulhalim I 2009 J. Nanophoton. 3 031501
[29] Matsubara K, Kawata S and Minami S 1990 Opt. Lett. 15 75
[30] Shalabney A and Abdulhalim I 2011 Laser Photon. Rev. 5 571
[1] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[2] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[3] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[4] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[5] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[6] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[7] Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3
Q Mahmood, N A Noor, T Ghrib, Nessrin A Kattan, Asif Mahmood, and Shahid M Ramay. Chin. Phys. B, 2020, 29(11): 117305.
[8] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[9] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[10] Thermoelectric properties of two-dimensional hexagonal indium-VA
Jing-Yun Bi(毕京云), Li-Hong Han(韩利红), Qian Wang(王倩), Li-Yuan Wu(伍力源), Ruge Quhe(屈贺如歌), Peng-Fei Lu(芦鹏飞). Chin. Phys. B, 2018, 27(2): 026802.
[11] Impact of coupling geometry on thermoelectric properties of oligophenyl-base transistor
S Ramezani Akbarabadi, H Rahimpour Soleimani, M Bagheri Tagani, Z Golsanamlou. Chin. Phys. B, 2017, 26(2): 027303.
[12] Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions
Li Yi (李宜), Liu Jian (刘剑), Wang Chun-Lei (王春雷), Su Wen-Bin (苏文斌), Zhu Yuan-Hu (祝元虎), Li Ji-Chao (李吉超), Mei Liang-Mo (梅良模). Chin. Phys. B, 2015, 24(4): 047201.
[13] Multifunctional disk device for optical switch and temperature sensor
Bian Zhen-Yu (卞振宇), Liang Rui-Sheng (梁瑞生), Zhang Yu-Jing (张郁靖), Yi Li-Xuan (易丽璇), Lai Gen (赖根), Zhao Rui-Tong (赵瑞通). Chin. Phys. B, 2015, 24(10): 107801.
[14] A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film
Zhang Zu-Yin (张祖银), Wang Li-Na (王立娜), Hu Hai-Feng (胡海峰), Li Kang-Wen (李康文), Ma Xun-Peng (马勋鹏), Song Guo-Feng (宋国峰). Chin. Phys. B, 2013, 22(10): 104213.
No Suggested Reading articles found!