Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047201    DOI: 10.1088/1674-1056/24/4/047201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions

Li Yi (李宜)a, Liu Jian (刘剑)a b, Wang Chun-Lei (王春雷)a b, Su Wen-Bin (苏文斌)a b, Zhu Yuan-Hu (祝元虎)a, Li Ji-Chao (李吉超)a b, Mei Liang-Mo (梅良模)a b
a School of Physics, Shandong University, Jinan 250100, China;
b State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  The thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high-temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be ~ 0.19 at 1073 K in the heaviest oxygen reduced sample.
Keywords:  Sr0.61Ba0.39Nb2O6 -δ      electrical transport mechanism      thermoelectric figure of merit      thermal conductivity  
Received:  06 August 2014      Revised:  25 September 2014      Accepted manuscript online: 
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  72.20.Ee (Mobility edges; hopping transport)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 51202132 and 51002087).
Corresponding Authors:  Liu Jian     E-mail:  liujjx@sdu.edu.cn

Cite this article: 

Li Yi (李宜), Liu Jian (刘剑), Wang Chun-Lei (王春雷), Su Wen-Bin (苏文斌), Zhu Yuan-Hu (祝元虎), Li Ji-Chao (李吉超), Mei Liang-Mo (梅良模) Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions 2015 Chin. Phys. B 24 047201

[1] Snyder G J, Christensen M, Nishibori E, Caillat T and Iversenet B B 2004 Nat. Mater. 3 458
[2] Svechnikova T E, Shelimova L E, Konstantinov P P, Kretova M A, Avilov E S, Zemskov V S, Stiewe C, Zuber A and Muller E 2005 Inorg. Mater. 10 1043
[3] Zhang H,Luo J,Zhu H T, Liu Q L, Liang J K, Li J B and Liu G Y 2012 Chin. Phys. B 21 106101
[4] Nolas G S, Cohen J L, Slack G A and Schujman S B 1998 Appl. Phys. Lett. 73 178
[5] Venkatasubramanian R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597
[6] Tritt T M 2002 Thermoelectric Materials: Principles, Structure, Properties, and Applications, in: Encyclopedia of Materials: Science and Technology pp. 1-11
[7] Lu P X, Qu L B and Cheng Q H 2013 Chin. Phys. B 22 117101
[8] H Ohta 2007 Mater. Today 10 44
[9] Liu Y, Li H J, Zhang Q, Li Y and Liu H T 2013 Chin. Phys. B 22 057201
[10] Lee S, Wilke R H T, Trolier-McKinstry S, Zhang S J and Randall C A 2010 Appl. Phys. Lett. 96 031910
[11] Lee S, Dursun S, Duran C and Randall C A 2011 J. Mater. Res. 26 26
[12] Choy C L, Leung W P, Xi T G, Fei Y and Shao C F 1992 J. Appl. Phys. 71 70
[13] Liu J, Wang C L, Yi L, Su W B, Zhu Y H, Li J C and Mei L M 2013 J. Appl. Phys. 114 223714
[14] Mott N F and Davis E A 1971 Electronic Processes in Non-Crystalline Materials, 2nd edn. (New York: Oxford University Press)
[15] Jaime M, Salamon M B, Pettit K, Rubinstein M, Treece R E, Horwitz J S and Chrisey D B 1996 Appl. Phys. Lett. 68 1576
[16] Heikes R R and Ure R W 1961 Thermoelectricity: Science and Engineering (New York: Interscience) p. 77
[17] Chaikin PM and Beni G 1976 Phys. Rev. B 13 647
[18] Kittel C 1996 Introduction to Solid State Physics, 7th edn. (New York: John Wiley)
[19] Fischer E, Hässler W and Hegenbarth E 1982 Phys. Stat. Sol. 72 169
[20] Kittel C 1949 Phys. Rev. 75 972
[21] Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. B 46 6131
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[10] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[11] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[12] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[13] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[14] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[15] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
No Suggested Reading articles found!