INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
NiO/β-Ga2O3 heterojunction diodes with ultra-low leakage current below 10-10 A and high thermostability |
Yi Huang(黄义)1, Wen Yang(杨稳)1, Qi Wang(王琦)1,†, Sheng Gao(高升)1, Wei-Zhong Chen(陈伟中)1, Xiao-Sheng Tang(唐孝生)1, Hong-Sheng Zhang(张红升)1, and Bin Liu(刘斌)2 |
1 School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China |
|
|
Abstract The 10 nm p-NiO thin film is prepared by thermal oxidation of Ni on β-Ga2O3 to form NiO/β-Ga2O3 p-n heterojunction diodes (HJDs). The NiO/β-Ga2O3 HJDs exhibit excellent electrostatic properties, with a high breakdown voltage of 465 V, a specific on-resistance (Ron,sp) of 3.39 mΩ ·cm2, and a turn-on voltage (Von) of 1.85 V, yielding a static Baliga's figure of merit (FOM) of 256 MW/cm2. Also, the HJDs have a low turn-on voltage, which reduces conduction loss dramatically, and a rectification ratio of up to 108. Meanwhile, the HJDs' reverse leakage current is essentially unaffected at temperatures below 170 ℃, and their leakage level may be controlled below 10-10 A. This indicates that p-NiO/β-Ga2O3 HJDs with good thermal stability and high-temperature operating ability can be a good option for high-performance β-Ga2O3 power devices.
|
Received: 15 October 2022
Revised: 16 November 2022
Accepted manuscript online: 22 November 2022
|
PACS:
|
85.30.Kk
|
(Junction diodes)
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
81.05.Hd
|
(Other semiconductors)
|
|
Fund: Project supported by the Technology Innovation and Application Demonstration Key Project of Chongqing Municipality (cstc2019jszx-zdztzxX0005), the Technology Innovation and Application Demonstration Key Project of Chongqing Municipality (cstc2020jscx-gksbX0011), the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202100614), and the Natural Science Foundation of Chongqing (cstc2021jcyj-bshX0146). |
Corresponding Authors:
Qi Wang
E-mail: wangqi@cqupt.edu.cn
|
Cite this article:
Yi Huang(黄义), Wen Yang(杨稳), Qi Wang(王琦), Sheng Gao(高升), Wei-Zhong Chen(陈伟中), Xiao-Sheng Tang(唐孝生), Hong-Sheng Zhang(张红升), and Bin Liu(刘斌) NiO/β-Ga2O3 heterojunction diodes with ultra-low leakage current below 10-10 A and high thermostability 2023 Chin. Phys. B 32 098502
|
[1] Hao W B, He Q, Zhou K, Xu G, Xiong W, Zhou X, Jian G, Chen C, Zhao X and Long S 2021 Appl. Phys. Lett. 118 043501 [2] Ji M, Taylor N R, Kravchenko I, Joshi P, Aytug T, Cao L R and Paranthaman M P 2021 IEEE Trans. Power Electron. 36 41 [3] Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301 [4] Xiao M, Wang B, Liu J, Zhang R, Zhang Z, Ding C, Lu S, Sasaki K, Lu G Q, Buttay C and Zhang Y 2021 IEEE Trans. Power Electron. 36 8565 [5] Gong H, Zhou F, Xu W, Yu X, Xu Y, Yang Y, Ren F F, Gu S, Zheng Y, Zhang R, Lu H and Ye J 2021 IEEE Trans. Power Electron. 36 12213 [6] Allen N, Xiao M, Yan X, Sasaki K, Tadjer M J, Ma J, Zhang R, Wang H and Zhang Y 2019 IEEE Electron. Device. Lett. 40 1399 [7] Sharma R, Xian M, Fares C, Law M E, Tadjer M, Hobart K D, Ren F and Pearton S J 2021 J. Vac. Sci. Technol. A 39 013406 [8] Zhang H, Yuan L, Tang X, Hu J, Sun J, Zhang Y, Zhang Y and Jia R 2020 IEEE Trans. Power Electron. 35 5157 [9] Luo H, Zhou X, Chen Z, Pei Y, Lu X and Wang G 2021 IEEE Trans. Electron. Devices 68 3991 [10] Gong H H, Chen X H, Xu Y, Ren F F, Gu S L and Ye J D 2020 Appl. Phys. Lett. 117 022104 [11] He Q, Zhou X, Li Q, Hao W, Liu Q, Han Z, Zhou K, Chen C, Peng J, Xu G, Zhao X, Wu X and Long S 2022 IEEE Electron. Device. Lett. 43 1933 [12] Xiong W, Zhou X, Xu G, He Q, Jian G, Chen C, Yu Y, Hao W, Xiang X, Zhao X, Mu W, Jia Z, Tao X and Long S 2021 IEEE Electron. Device. Lett. 42 430 [13] Lu X, Zhou X, Jiang H, Ng K W, Chen Z, Pei Y, Lau K M and Wang G 2020 IEEE Electron. Device. Lett. 41 449 [14] Hao W B, He Q M, Zhou X Z, Zhao X L, Xu G W and Long S B 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD) pp. 105-108 [15] Gong H H, Yu X X, Xu Y, Chen X H, Kuang Y, Lv Y J, Yang Y, Ren F F, Feng Z H, Gu S L, Zheng Y D, Zhang R and Ye J D 2021 Appl. Phys. Lett. 118 202102 [16] Wang C, Gong H, Lei W, Cai Y, Hu Z, Xu S, Liu Z, Feng Q, Zhou H, Ye J, Zhang J, Zhang R and Hao Y 2021 IEEE Electron. Device. Lett. 42 485 [17] Zhou F, Gong H, Xu W, Yu X, Xu Y, Yang Y, Ren F F, Gu S, Zheng Y, Zhang R, Ye J and Lu H 2022 IEEE Trans. Power Electron. 37 1223 [18] Zhou H, Feng Q, Ning J, Zhang C, Ma P, Hao Y, Yan Q, Zhang J, Lv Y, Liu Z, Zhang Y, Dang K, Dong P and Feng Z 2019 IEEE Electron. Device. Lett. 40 1788 [19] Han S W, Yang S, Li Y K, Liu Y X, and Sheng K 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD) pp. 63-66 [20] Lu X, Zhou L D, Chen L, Ouyang X P, Tang H L, Liu B and Xu J 2019 ECS J. Solid State SC 8 Q3036 [21] Zhou L D, Lu X, Chen L, Ouyang X P, Liu B, Xu J and Tang H L 2019 ECS J Solid State SC 8 Q3054 [22] Zhang Y, Wong H Y, Sun M, Joglekar S, Yu L, Braga N A, R V and Mickevicius T 2015 Palacios 2015 61st IEEE International Electron Devices Meeting pp. 35-1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|