Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 098502    DOI: 10.1088/1674-1056/aca4be
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

NiO/β-Ga2O3 heterojunction diodes with ultra-low leakage current below 10-10 A and high thermostability

Yi Huang(黄义)1, Wen Yang(杨稳)1, Qi Wang(王琦)1,†, Sheng Gao(高升)1, Wei-Zhong Chen(陈伟中)1, Xiao-Sheng Tang(唐孝生)1, Hong-Sheng Zhang(张红升)1, and Bin Liu(刘斌)2
1 School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  The 10 nm p-NiO thin film is prepared by thermal oxidation of Ni on β-Ga2O3 to form NiO/β-Ga2O3 p-n heterojunction diodes (HJDs). The NiO/β-Ga2O3 HJDs exhibit excellent electrostatic properties, with a high breakdown voltage of 465 V, a specific on-resistance (Ron,sp) of 3.39 mΩ ·cm2, and a turn-on voltage (Von) of 1.85 V, yielding a static Baliga's figure of merit (FOM) of 256 MW/cm2. Also, the HJDs have a low turn-on voltage, which reduces conduction loss dramatically, and a rectification ratio of up to 108. Meanwhile, the HJDs' reverse leakage current is essentially unaffected at temperatures below 170 ℃, and their leakage level may be controlled below 10-10 A. This indicates that p-NiO/β-Ga2O3 HJDs with good thermal stability and high-temperature operating ability can be a good option for high-performance β-Ga2O3 power devices.
Keywords:  NiO/β-Ga2O3 p-n heterojunction diodes      Baliga's figure of merit      reverse leakage current      β-Ga2O3 power devices  
Received:  15 October 2022      Revised:  16 November 2022      Accepted manuscript online:  22 November 2022
PACS:  85.30.Kk (Junction diodes)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  81.05.Hd (Other semiconductors)  
Fund: Project supported by the Technology Innovation and Application Demonstration Key Project of Chongqing Municipality (cstc2019jszx-zdztzxX0005), the Technology Innovation and Application Demonstration Key Project of Chongqing Municipality (cstc2020jscx-gksbX0011), the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202100614), and the Natural Science Foundation of Chongqing (cstc2021jcyj-bshX0146).
Corresponding Authors:  Qi Wang     E-mail:  wangqi@cqupt.edu.cn

Cite this article: 

Yi Huang(黄义), Wen Yang(杨稳), Qi Wang(王琦), Sheng Gao(高升), Wei-Zhong Chen(陈伟中), Xiao-Sheng Tang(唐孝生), Hong-Sheng Zhang(张红升), and Bin Liu(刘斌) NiO/β-Ga2O3 heterojunction diodes with ultra-low leakage current below 10-10 A and high thermostability 2023 Chin. Phys. B 32 098502

[1] Hao W B, He Q, Zhou K, Xu G, Xiong W, Zhou X, Jian G, Chen C, Zhao X and Long S 2021 Appl. Phys. Lett. 118 043501
[2] Ji M, Taylor N R, Kravchenko I, Joshi P, Aytug T, Cao L R and Paranthaman M P 2021 IEEE Trans. Power Electron. 36 41
[3] Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
[4] Xiao M, Wang B, Liu J, Zhang R, Zhang Z, Ding C, Lu S, Sasaki K, Lu G Q, Buttay C and Zhang Y 2021 IEEE Trans. Power Electron. 36 8565
[5] Gong H, Zhou F, Xu W, Yu X, Xu Y, Yang Y, Ren F F, Gu S, Zheng Y, Zhang R, Lu H and Ye J 2021 IEEE Trans. Power Electron. 36 12213
[6] Allen N, Xiao M, Yan X, Sasaki K, Tadjer M J, Ma J, Zhang R, Wang H and Zhang Y 2019 IEEE Electron. Device. Lett. 40 1399
[7] Sharma R, Xian M, Fares C, Law M E, Tadjer M, Hobart K D, Ren F and Pearton S J 2021 J. Vac. Sci. Technol. A 39 013406
[8] Zhang H, Yuan L, Tang X, Hu J, Sun J, Zhang Y, Zhang Y and Jia R 2020 IEEE Trans. Power Electron. 35 5157
[9] Luo H, Zhou X, Chen Z, Pei Y, Lu X and Wang G 2021 IEEE Trans. Electron. Devices 68 3991
[10] Gong H H, Chen X H, Xu Y, Ren F F, Gu S L and Ye J D 2020 Appl. Phys. Lett. 117 022104
[11] He Q, Zhou X, Li Q, Hao W, Liu Q, Han Z, Zhou K, Chen C, Peng J, Xu G, Zhao X, Wu X and Long S 2022 IEEE Electron. Device. Lett. 43 1933
[12] Xiong W, Zhou X, Xu G, He Q, Jian G, Chen C, Yu Y, Hao W, Xiang X, Zhao X, Mu W, Jia Z, Tao X and Long S 2021 IEEE Electron. Device. Lett. 42 430
[13] Lu X, Zhou X, Jiang H, Ng K W, Chen Z, Pei Y, Lau K M and Wang G 2020 IEEE Electron. Device. Lett. 41 449
[14] Hao W B, He Q M, Zhou X Z, Zhao X L, Xu G W and Long S B 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD) pp. 105-108
[15] Gong H H, Yu X X, Xu Y, Chen X H, Kuang Y, Lv Y J, Yang Y, Ren F F, Feng Z H, Gu S L, Zheng Y D, Zhang R and Ye J D 2021 Appl. Phys. Lett. 118 202102
[16] Wang C, Gong H, Lei W, Cai Y, Hu Z, Xu S, Liu Z, Feng Q, Zhou H, Ye J, Zhang J, Zhang R and Hao Y 2021 IEEE Electron. Device. Lett. 42 485
[17] Zhou F, Gong H, Xu W, Yu X, Xu Y, Yang Y, Ren F F, Gu S, Zheng Y, Zhang R, Ye J and Lu H 2022 IEEE Trans. Power Electron. 37 1223
[18] Zhou H, Feng Q, Ning J, Zhang C, Ma P, Hao Y, Yan Q, Zhang J, Lv Y, Liu Z, Zhang Y, Dang K, Dong P and Feng Z 2019 IEEE Electron. Device. Lett. 40 1788
[19] Han S W, Yang S, Li Y K, Liu Y X, and Sheng K 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD) pp. 63-66
[20] Lu X, Zhou L D, Chen L, Ouyang X P, Tang H L, Liu B and Xu J 2019 ECS J. Solid State SC 8 Q3036
[21] Zhou L D, Lu X, Chen L, Ouyang X P, Liu B, Xu J and Tang H L 2019 ECS J Solid State SC 8 Q3054
[22] Zhang Y, Wong H Y, Sun M, Joglekar S, Yu L, Braga N A, R V and Mickevicius T 2015 Palacios 2015 61st IEEE International Electron Devices Meeting pp. 35-1
[1] Effects of fluorine-based plasma treatment and thermal annealing on high-Al content AlGaN Schottky contact
Fang Liu(刘芳), Zhixin Qin(秦志新). Chin. Phys. B, 2016, 25(11): 117304.
No Suggested Reading articles found!