CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Vortex bound states influenced by the Fermi surface anisotropy |
Delong Fang(方德龙)† |
Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China |
|
|
Abstract The spatial distribution of vortex bound states is often anisotropic, which is correlated with the underlying property of materials. In this work, we examine the effects of Fermi surface anisotropy on vortex bound states. The large-scale calculation of vortex bound states is introduced in the presence of fourfold or twofold Fermi surface by solving the Bogoliubov-de Gennes (BdG) equations. Two kinds of quasiparticles' behaviors can be extracted from the local density of states (LDOS) around a vortex. The angle-dependent quasiparticles will move from high energy to low energy when the angle varies from curvature maxima to minima of the Fermi surface, while the angle-independent quasiparticles tend to stay at a relatively higher energy. In addition, the weight of angle-dependent quasiparticles can be enhanced by the increasing anisotropy degree of Fermi surface.
|
Received: 22 June 2022
Revised: 21 August 2022
Accepted manuscript online: 05 September 2022
|
PACS:
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
74.25.Op
|
(Mixed states, critical fields, and surface sheaths)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804154) and Scientific Research Foundation of NJIT (Grant No. YKJ201853). |
Corresponding Authors:
Delong Fang
E-mail: fangdel@njit.edu.cn
|
Cite this article:
Delong Fang(方德龙) Vortex bound states influenced by the Fermi surface anisotropy 2023 Chin. Phys. B 32 037403
|
[1] Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H and Pan S H 2015 Nat. Phys. 11 543 [2] Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G Da, Fu L, Ding H and Gao H J 2018 Science 362 333 [3] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X and Feng D L 2018 Phys. Rev. X 8 041056 [4] Kong L Y, Zhu S Y, Papaj M, Chen H, Cao L, Isobe H, Xing Y Q, Liu W Y, Wang D F, Fan P, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G Da, Fu L, Gao H J and Ding H 2019 Nat. Phys. 15 1181 [5] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811 [6] Caroli C, de Gennes P G and Matricon J 1964 Phys. Lett. 9 307 [7] Chen M Y, Chen X Y, Yang H, Du Z Y, Zhu X Y, Wang E Y and Wen H H 2018 Nat. Commun. 9 970 [8] Chen C, Liu Q, Bao W C, Yan Y, Wang Q H, Zhang T and Feng D L 2020 Phys. Rev. Lett. 124 097001 [9] Chen X Y, Duan W, Fan X W, Hong W S, Chen K L, Yang H, Li S L, Luo H Q and Wen H H 2021 Phys. Rev. Lett. 126 257002 [10] Fischer O, Kugler M, Maggio-Aprile I, Berthod C and Renner C 2007 Rev. Mod. Phys. 79 353 [11] Hoffman J E 2011 Rep. Prog. Phys. 74 124513 [12] Suderow H, Guillamón I, Rodrigo J G and Vieira S 2014 Supercond. Sci. Technol. 27 063001 [13] Hess H F, Robinson R B and Waszczak J V 1990 Phys. Rev. Lett. 64 2711 [14] Guillamón I, Suderow H, Vieira S, Cario L, Diener P and Rodiére P 2008 Phys. Rev. Lett. 101 166407 [15] De Wilde Y, Iavarone M, Welp U, Metlushko V, Koshelev A E, Aranson I, Crabtree G W, Gammel P L, Bishop D J and Canfield P C 1997 Physica C 282 355 [16] Nishimori H, Uchiyama K, Kaneko S, Tokura A, Takeya H, Hirata K and Nishida N 2004 J. Phys. Soc. Jpn. 73 3247 [17] Hanaguri T, Kitagawa K, Matsubayashi K, Mazaki Y, Uwatoko Y and Takagi H 2012 Phys. Rev. B 85 214505 [18] Zhou B B, Misra S, da Silva Neto E H, Aynajian P, Baumbach R E, Thompson J D, Bauer E D and Yazdani A 2013 Nat. Phys. 9 474 [19] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X and Xue Q K 2011 Science 332 1410 [20] Du Z Y, Fang D L, Wang Z Y, Li Y F, Du G, Yang H, Zhu X Y and Wen H H 2015 Sci. Rep. 5 9408 [21] Fan Q, Zhang W H, Liu X, Yan Y J, Ren M Q, Xia M, Chen H Y, Xu D F, Ye Z R, Jiao W H, Cao G H, Xie B P, Zhang T and Feng D L 2015 Phys. Rev. B 91 104506 [22] Zhang H M, Li Z X, Peng J P, Song C L, Guan J Q, Li Z, Wang L L, He K, Ji S H, Chen X, Yao H, Ma X C and Xue Q K 2016 Phys. Rev. B 93 020501(R) [23] Chen M Y, Chen X Y, Yang H, Du Z Y and Wen H H 2018 Sci. Adv. 4 eaat1084 [24] Liu X, Tao R, Ren M Q, Chen W, Yao Q, Wolf T, Yan Y J, Zhang T and Feng D L 2019 Nat. Commun. 10 1039 [25] Gygi F and Schluter M 1990 Phys. Rev. Lett. 65 1820 [26] Gygi F and Schlüter M 1991 Phys. Rev. B 43 7609 [27] Ichioka M, Hayashi N and Machida K 1997 Phys. Rev. B 55 6565 [28] Zhu Y D, Zhang F C and Sigrist M 1995 Phys. Rev. B 51 1105 [29] Hayashi N, Ichioka M and Machida K 1996 Phys. Rev. Lett. 77 4074 [30] Hayashi N, Ichioka M and Machida K 1997 Phys. Rev. B 56 9052 [31] Kim H, Nagai Y, Rózsa L, Schreyer D and Wiesendanger R 2021 Appl. Phys. Rev. 8 031417 [32] Wang Y, Hirschfeld P J and Vekhter I 2012 Phys. Rev. B 85 020506(R) [33] Lee K, Fischer M H and Kim E A 2013 New J. Phys. 15 053048 [34] Uranga B M, Gastiasoro M N and Andersen B M 2016 Phys. Rev. B 93 224503 [35] Udby L, Andersen B M and Hedegård P 2006 Phys. Rev. B 73 224510 [36] Wang D, Xu J, Xiang Y Y and Wang Q H 2010 Phys. Rev. B 82 184519 [37] Fang D L, Liu J S and Cui Y K 2021 Physica C 591 1353963 [38] Borisenko S V, Zabolotnyy V B, Evtushinsky D V, Kim T K, Morozov I V, Yaresko A N, Kordyuk A A, Behr G, Vasiliev A, Follath R and Büchner B 2010 Phys. Rev. Lett. 105 067002 [39] Umezawa K, Li Y, Miao H, Nakayama K, Liu Z H, Richard P, Sato T, He J B, Wang D M, Chen G F, Ding H, Takahashi T and Wang S C 2012 Phys. Rev. Lett. 108 037002 [40] Hanaguri T, Kasahara S, Böker J, Eremin I, Shibauchi T and Matsuda Y 2019 Phys. Rev. Lett. 122 077001 [41] Hayashi N, Isoshima T, Ichioka M and Machida K 1998 Phys. Rev. Lett. 80 2921 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|