Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037403    DOI: 10.1088/1674-1056/ac8f32
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Vortex bound states influenced by the Fermi surface anisotropy

Delong Fang(方德龙)
Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China
Abstract  The spatial distribution of vortex bound states is often anisotropic, which is correlated with the underlying property of materials. In this work, we examine the effects of Fermi surface anisotropy on vortex bound states. The large-scale calculation of vortex bound states is introduced in the presence of fourfold or twofold Fermi surface by solving the Bogoliubov-de Gennes (BdG) equations. Two kinds of quasiparticles' behaviors can be extracted from the local density of states (LDOS) around a vortex. The angle-dependent quasiparticles will move from high energy to low energy when the angle varies from curvature maxima to minima of the Fermi surface, while the angle-independent quasiparticles tend to stay at a relatively higher energy. In addition, the weight of angle-dependent quasiparticles can be enhanced by the increasing anisotropy degree of Fermi surface.
Keywords:  vortex      anisotropy      Fermi surface      local density of states  
Received:  22 June 2022      Revised:  21 August 2022      Accepted manuscript online:  05 September 2022
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804154) and Scientific Research Foundation of NJIT (Grant No. YKJ201853).
Corresponding Authors:  Delong Fang     E-mail:  fangdel@njit.edu.cn

Cite this article: 

Delong Fang(方德龙) Vortex bound states influenced by the Fermi surface anisotropy 2023 Chin. Phys. B 32 037403

[1] Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H and Pan S H 2015 Nat. Phys. 11 543
[2] Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G Da, Fu L, Ding H and Gao H J 2018 Science 362 333
[3] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X and Feng D L 2018 Phys. Rev. X 8 041056
[4] Kong L Y, Zhu S Y, Papaj M, Chen H, Cao L, Isobe H, Xing Y Q, Liu W Y, Wang D F, Fan P, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G Da, Fu L, Gao H J and Ding H 2019 Nat. Phys. 15 1181
[5] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811
[6] Caroli C, de Gennes P G and Matricon J 1964 Phys. Lett. 9 307
[7] Chen M Y, Chen X Y, Yang H, Du Z Y, Zhu X Y, Wang E Y and Wen H H 2018 Nat. Commun. 9 970
[8] Chen C, Liu Q, Bao W C, Yan Y, Wang Q H, Zhang T and Feng D L 2020 Phys. Rev. Lett. 124 097001
[9] Chen X Y, Duan W, Fan X W, Hong W S, Chen K L, Yang H, Li S L, Luo H Q and Wen H H 2021 Phys. Rev. Lett. 126 257002
[10] Fischer O, Kugler M, Maggio-Aprile I, Berthod C and Renner C 2007 Rev. Mod. Phys. 79 353
[11] Hoffman J E 2011 Rep. Prog. Phys. 74 124513
[12] Suderow H, Guillamón I, Rodrigo J G and Vieira S 2014 Supercond. Sci. Technol. 27 063001
[13] Hess H F, Robinson R B and Waszczak J V 1990 Phys. Rev. Lett. 64 2711
[14] Guillamón I, Suderow H, Vieira S, Cario L, Diener P and Rodiére P 2008 Phys. Rev. Lett. 101 166407
[15] De Wilde Y, Iavarone M, Welp U, Metlushko V, Koshelev A E, Aranson I, Crabtree G W, Gammel P L, Bishop D J and Canfield P C 1997 Physica C 282 355
[16] Nishimori H, Uchiyama K, Kaneko S, Tokura A, Takeya H, Hirata K and Nishida N 2004 J. Phys. Soc. Jpn. 73 3247
[17] Hanaguri T, Kitagawa K, Matsubayashi K, Mazaki Y, Uwatoko Y and Takagi H 2012 Phys. Rev. B 85 214505
[18] Zhou B B, Misra S, da Silva Neto E H, Aynajian P, Baumbach R E, Thompson J D, Bauer E D and Yazdani A 2013 Nat. Phys. 9 474
[19] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X and Xue Q K 2011 Science 332 1410
[20] Du Z Y, Fang D L, Wang Z Y, Li Y F, Du G, Yang H, Zhu X Y and Wen H H 2015 Sci. Rep. 5 9408
[21] Fan Q, Zhang W H, Liu X, Yan Y J, Ren M Q, Xia M, Chen H Y, Xu D F, Ye Z R, Jiao W H, Cao G H, Xie B P, Zhang T and Feng D L 2015 Phys. Rev. B 91 104506
[22] Zhang H M, Li Z X, Peng J P, Song C L, Guan J Q, Li Z, Wang L L, He K, Ji S H, Chen X, Yao H, Ma X C and Xue Q K 2016 Phys. Rev. B 93 020501(R)
[23] Chen M Y, Chen X Y, Yang H, Du Z Y and Wen H H 2018 Sci. Adv. 4 eaat1084
[24] Liu X, Tao R, Ren M Q, Chen W, Yao Q, Wolf T, Yan Y J, Zhang T and Feng D L 2019 Nat. Commun. 10 1039
[25] Gygi F and Schluter M 1990 Phys. Rev. Lett. 65 1820
[26] Gygi F and Schlüter M 1991 Phys. Rev. B 43 7609
[27] Ichioka M, Hayashi N and Machida K 1997 Phys. Rev. B 55 6565
[28] Zhu Y D, Zhang F C and Sigrist M 1995 Phys. Rev. B 51 1105
[29] Hayashi N, Ichioka M and Machida K 1996 Phys. Rev. Lett. 77 4074
[30] Hayashi N, Ichioka M and Machida K 1997 Phys. Rev. B 56 9052
[31] Kim H, Nagai Y, Rózsa L, Schreyer D and Wiesendanger R 2021 Appl. Phys. Rev. 8 031417
[32] Wang Y, Hirschfeld P J and Vekhter I 2012 Phys. Rev. B 85 020506(R)
[33] Lee K, Fischer M H and Kim E A 2013 New J. Phys. 15 053048
[34] Uranga B M, Gastiasoro M N and Andersen B M 2016 Phys. Rev. B 93 224503
[35] Udby L, Andersen B M and Hedegård P 2006 Phys. Rev. B 73 224510
[36] Wang D, Xu J, Xiang Y Y and Wang Q H 2010 Phys. Rev. B 82 184519
[37] Fang D L, Liu J S and Cui Y K 2021 Physica C 591 1353963
[38] Borisenko S V, Zabolotnyy V B, Evtushinsky D V, Kim T K, Morozov I V, Yaresko A N, Kordyuk A A, Behr G, Vasiliev A, Follath R and Büchner B 2010 Phys. Rev. Lett. 105 067002
[39] Umezawa K, Li Y, Miao H, Nakayama K, Liu Z H, Richard P, Sato T, He J B, Wang D M, Chen G F, Ding H, Takahashi T and Wang S C 2012 Phys. Rev. Lett. 108 037002
[40] Hanaguri T, Kasahara S, Böker J, Eremin I, Shibauchi T and Matsuda Y 2019 Phys. Rev. Lett. 122 077001
[41] Hayashi N, Isoshima T, Ichioka M and Machida K 1998 Phys. Rev. Lett. 80 2921
[1] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
[2] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[3] Propagation and focusing characteristics of the Bessel-Gaussian beam with the spiral phase term of new power-exponent-phase
Aotian Wang(王傲天), Lianghong Yu(於亮红), Jinfeng Li(李进峰), and Xiaoyan Liang(梁晓燕). Chin. Phys. B, 2023, 32(4): 044201.
[4] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[5] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[6] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[7] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[8] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[9] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[10] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[11] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[12] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[13] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[14] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[15] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
No Suggested Reading articles found!