Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037502    DOI: 10.1088/1674-1056/aca6d7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures

Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力)
Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
Abstract  The spin-orbit torque via the spin Hall effect of heavy metals has shown promising prospect in driving the magnetization switching in spintronic devices due to the generated spin current from heavy metals. Recently, the 3d-light metals have been predicted the ability to generate orbital current and the associated orbital torques from the orbital Hall effect. However, few experiments have been carried out since it is quite hard to directly detect the orbital current-generated orbital torque. Here, we report an effective method to demonstrate the strong orbital torques in light metal Cr through a conversion process from orbital current to spin current by introducing the Pt interfacial layer in perpendicularly magnetized symmetric Pt/Co/Pt structures. A quite large and monotonically growth of orbital torque efficiency in Pt/Co/Pt/Cr with the increase of the thickness of Cr layer is obtained with the largest effective orbital torque efficiency around 2.6 Oe/(MA·cm-2) (1 Oe=79.5775 A·m-1). The ability of orbital torque to drive the magnetization switching is also reported with the critical switching current density down to the order of 106 A·cm-2. Our findings prove the efficiency for switching the magnetization from light metal Cr layers through the orbital Hall effect.
Keywords:  spin Hall effect      orbital Hall effect      magnetization switching  
Received:  16 September 2022      Revised:  24 November 2022      Accepted manuscript online:  29 November 2022
PACS:  75.70.Tj (Spin-orbit effects)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
  77.80.Fm (Switching phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91963201 and 51671098), the 111 Project (Grant No. B20063), the Program for Changjiang Scholars and Innovative Research Team in University PCSIRT (Grant No. IRT16R35), and the Natural Science Foundation of Gansu Province, China (Grant No. 22JR5RA474).
Corresponding Authors:  Yalu Zuo, Li Xi     E-mail:  zuoyl@lzu.edu.cn;xili@lzu.edu.cn

Cite this article: 

Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力) Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures 2023 Chin. Phys. B 32 037502

[1] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[2] Murakami S 2005 Advances in Solid State Physics 45 (Berlin, Heidelberg: Springer-Verlag) p. 209
[3] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213
[4] Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K and Gambardella P 2019 Rev. Mod. Phys. 91 035004
[5] Hoffmann A 2013 IEEE Trans. Magn. 49 5172
[6] Husain S, Gupta R, Kumar A, Kumar P, Behera N, Brucas R, Chaudhary S and Svedlindh P 2020 Appl. Phys. Rev. 7 041312
[7] Chen Q, Lv W, Li S, Lv W, Cai J, Zhu Y, Wang J, Li R, Zhang B and Zeng Z 2021 Chin. Phys. B 30 097506
[8] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N and Ralph D C 2014 Nature 511 449
[9] Wu H, Zhang P, Deng P, Lan Q, Pan Q, Seyed A R, Che X, Huang L, Dai B, Wong K, Han X and Wang K L 2019 Phys. Rev. Lett. 123 207205
[10] Zhang X, Zhang J, Zhai Y, Bai Q, Chang M, Yan Z, Zuo Y and Xi L 2021 Phys. Status Solidi RRL 15 2100327
[11] Bernevig B A, Hughes T L and Zhang S C 2005 Phys. Rev. Lett. 95 066601
[12] Go D, Jo D, Kim C and Lee H W 2018 Phys. Rev. Lett. 121 086602
[13] Kontani H, Tanaka T, Hirashima D S, Yamada K and Inoue J 2009 Phys. Rev. Lett. 102 016601
[14] Go D, Jo D, Gao T, Ando K, Blügel S, Lee H W and Mokrousov Y 2021 Phys. Rev. B 103 L121113
[15] Jo D, Go D and Lee H W 2018 Phys. Rev. B 98 214405
[16] Zheng Z C, Guo Q X, Jo D, Go D, Wang L H, Chen H C, Yin W, Wang X M, Yu G H, He W, Lee H W, Teng J and Zhu T 2020 Phys. Rev. Res. 2 013127
[17] Lee D, Go D, Park H J, Jeong W, Ko H W, Yun D, Jo D, Lee S, Go G, Oh J H, Kim K J, Park B G, Min B C, Koo H C, Lee H W, Lee O and Lee K J 2021 Nat. Commun. 12 6710
[18] Ding S, Liang Z, Go D, Yun C, Xue M, Liu Z, Becker S, Yang W, Du H, Wang C, Yang Y, Jakob G, Kläui M, Mokrousov Y and Yang J 2022 Phys. Rev. Lett. 128 067201
[19] Go D and Lee H W 2020 Phys. Rev. Res. 2 013177
[20] Ding S, Ross A, Go D, Baldrati L, Ren Z, Freimuth F, Becker S, Kammerbauer F, Yang J, Jakob G, Mokrousov Y and Kläui M 2020 Phys. Rev. Lett. 125 177201
[21] Lee S, Kang M G, Go D, Kim D, Kang J H, Lee T, Lee G H, Kang J, Lee N J, Mokrousov Y, Kim S, Kim K J, Lee K J and Park B G 2021 Commun. Phys. 4 234
[22] Baek S C, Amin V P, Oh Y W, Go G, Lee S J, Lee G H, Kim K J, Stiles M D, Park B G and Lee K J 2018 Nat. Mater. 17 509
[23] Yun J, Bai Q, Yan Z, Chang M, Mao J, Zuo Y, Yang D, Xi L and Xue D 2020 Adv. Funct. Mater. 30 1909092
[24] Björck M and Andersson G 2007 J. Appl. Crystallogr. 40 1174
[25] Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S and Ohno H 2013 Nat. Mater. 12 240
[26] Sagasta E, Omori Y, Isasa M, Gradhand M, Hueso Luis E, Niimi Y, Otani Y and Casanova F 2016 Phys. Rev. B 94 060412
[27] Althammer M, Meyer S, Nakayama H, Schreier M, Altmannshofer S, Weiler M, Huebl H, Geprägs S, Opel M, Gross R, Meier D, Klewe C, Kuschel T, Schmalhorst J M, Reiss G, Shen L, Gupta A, Chen Y T, Bauer G E W, Saitoh E and Goennenwein S T B 2013 Phys. Rev. B 87 224401
[28] Bose A, Singh H, Kushwaha V K, Bhuktare S, Dutta S and Tulapurkar A A 2018 Phys. Rev. Appl. 9 014022
[29] Sala G and Gambardella P 2022 Phys. Rev. Res. 4 033037
[30] Du C, Wang H, Yang F and Hammel P C 2014 Phys. Rev. B 90 140407
[31] Liao L, Xue F, Han L, Kim J, Zhang R, Li L, Liu J, Kou X, Song C, Pan F and Otani Y 2022 Phys. Rev. B 105 104434
[32] Zheng Z C, Guo Q X, Jo D, Go D, Wang L H, Chen H C, Yin W, Wang X M, Yu G H, He W, Lee H W, Teng J and Zhu T 2020 Phys. Rev. Res. 2 013127
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Spin current transmission in Co1-xTbx films
Li Wang(王力), Yangtao Su(苏仰涛), Yang Meng(孟洋), Haibin Shi(石海滨), Xinyu Cao(曹昕宇), and Hongwu Zhao(赵宏武). Chin. Phys. B, 2022, 31(2): 027504.
[3] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[4] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
[5] Multiple modes of perpendicular magnetization switching scheme in single spin—orbit torque device
Tong-Xi Liu(刘桐汐), Zhao-Hao Wang(王昭昊), Min Wang(王旻), Chao Wang(王朝), Bi Wu(吴比), Wei-Qiang Liu(刘伟强), and Wei-Sheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(10): 107501.
[6] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[7] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[8] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[9] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[10] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
[11] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[12] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[13] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[14] Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect
Xue Zhou(周雪), Zeyu Jiang(姜泽禹), Kenan Zhang(张柯楠), Wei Yao(姚维), Mingzhe Yan(颜明哲), Hongyun Zhang(张红云), Wenhui Duan(段文晖), Shuyun Zhou(周树云). Chin. Phys. B, 2019, 28(10): 107307.
[15] Inverse spin Hall effect in ITO/YIG exited by spin pumping and spin Seebeck experiments
Kejian Zhu(朱科建), Weijian Lin(林伟坚), Yangtao Su(苏仰涛), Haibin Shi(石海滨), Yang Meng(孟洋), Hongwu Zhao(赵宏武). Chin. Phys. B, 2019, 28(1): 017201.
No Suggested Reading articles found!