CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures |
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路)†, and Li Xi(席力)‡ |
Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract The spin-orbit torque via the spin Hall effect of heavy metals has shown promising prospect in driving the magnetization switching in spintronic devices due to the generated spin current from heavy metals. Recently, the 3d-light metals have been predicted the ability to generate orbital current and the associated orbital torques from the orbital Hall effect. However, few experiments have been carried out since it is quite hard to directly detect the orbital current-generated orbital torque. Here, we report an effective method to demonstrate the strong orbital torques in light metal Cr through a conversion process from orbital current to spin current by introducing the Pt interfacial layer in perpendicularly magnetized symmetric Pt/Co/Pt structures. A quite large and monotonically growth of orbital torque efficiency in Pt/Co/Pt/Cr with the increase of the thickness of Cr layer is obtained with the largest effective orbital torque efficiency around 2.6 Oe/(MA·cm-2) (1 Oe=79.5775 A·m-1). The ability of orbital torque to drive the magnetization switching is also reported with the critical switching current density down to the order of 106 A·cm-2. Our findings prove the efficiency for switching the magnetization from light metal Cr layers through the orbital Hall effect.
|
Received: 16 September 2022
Revised: 24 November 2022
Accepted manuscript online: 29 November 2022
|
PACS:
|
75.70.Tj
|
(Spin-orbit effects)
|
|
75.60.-d
|
(Domain effects, magnetization curves, and hysteresis)
|
|
77.80.Fm
|
(Switching phenomena)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91963201 and 51671098), the 111 Project (Grant No. B20063), the Program for Changjiang Scholars and Innovative Research Team in University PCSIRT (Grant No. IRT16R35), and the Natural Science Foundation of Gansu Province, China (Grant No. 22JR5RA474). |
Corresponding Authors:
Yalu Zuo, Li Xi
E-mail: zuoyl@lzu.edu.cn;xili@lzu.edu.cn
|
Cite this article:
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力) Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures 2023 Chin. Phys. B 32 037502
|
[1] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910 [2] Murakami S 2005 Advances in Solid State Physics 45 (Berlin, Heidelberg: Springer-Verlag) p. 209 [3] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213 [4] Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K and Gambardella P 2019 Rev. Mod. Phys. 91 035004 [5] Hoffmann A 2013 IEEE Trans. Magn. 49 5172 [6] Husain S, Gupta R, Kumar A, Kumar P, Behera N, Brucas R, Chaudhary S and Svedlindh P 2020 Appl. Phys. Rev. 7 041312 [7] Chen Q, Lv W, Li S, Lv W, Cai J, Zhu Y, Wang J, Li R, Zhang B and Zeng Z 2021 Chin. Phys. B 30 097506 [8] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N and Ralph D C 2014 Nature 511 449 [9] Wu H, Zhang P, Deng P, Lan Q, Pan Q, Seyed A R, Che X, Huang L, Dai B, Wong K, Han X and Wang K L 2019 Phys. Rev. Lett. 123 207205 [10] Zhang X, Zhang J, Zhai Y, Bai Q, Chang M, Yan Z, Zuo Y and Xi L 2021 Phys. Status Solidi RRL 15 2100327 [11] Bernevig B A, Hughes T L and Zhang S C 2005 Phys. Rev. Lett. 95 066601 [12] Go D, Jo D, Kim C and Lee H W 2018 Phys. Rev. Lett. 121 086602 [13] Kontani H, Tanaka T, Hirashima D S, Yamada K and Inoue J 2009 Phys. Rev. Lett. 102 016601 [14] Go D, Jo D, Gao T, Ando K, Blügel S, Lee H W and Mokrousov Y 2021 Phys. Rev. B 103 L121113 [15] Jo D, Go D and Lee H W 2018 Phys. Rev. B 98 214405 [16] Zheng Z C, Guo Q X, Jo D, Go D, Wang L H, Chen H C, Yin W, Wang X M, Yu G H, He W, Lee H W, Teng J and Zhu T 2020 Phys. Rev. Res. 2 013127 [17] Lee D, Go D, Park H J, Jeong W, Ko H W, Yun D, Jo D, Lee S, Go G, Oh J H, Kim K J, Park B G, Min B C, Koo H C, Lee H W, Lee O and Lee K J 2021 Nat. Commun. 12 6710 [18] Ding S, Liang Z, Go D, Yun C, Xue M, Liu Z, Becker S, Yang W, Du H, Wang C, Yang Y, Jakob G, Kläui M, Mokrousov Y and Yang J 2022 Phys. Rev. Lett. 128 067201 [19] Go D and Lee H W 2020 Phys. Rev. Res. 2 013177 [20] Ding S, Ross A, Go D, Baldrati L, Ren Z, Freimuth F, Becker S, Kammerbauer F, Yang J, Jakob G, Mokrousov Y and Kläui M 2020 Phys. Rev. Lett. 125 177201 [21] Lee S, Kang M G, Go D, Kim D, Kang J H, Lee T, Lee G H, Kang J, Lee N J, Mokrousov Y, Kim S, Kim K J, Lee K J and Park B G 2021 Commun. Phys. 4 234 [22] Baek S C, Amin V P, Oh Y W, Go G, Lee S J, Lee G H, Kim K J, Stiles M D, Park B G and Lee K J 2018 Nat. Mater. 17 509 [23] Yun J, Bai Q, Yan Z, Chang M, Mao J, Zuo Y, Yang D, Xi L and Xue D 2020 Adv. Funct. Mater. 30 1909092 [24] Björck M and Andersson G 2007 J. Appl. Crystallogr. 40 1174 [25] Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S and Ohno H 2013 Nat. Mater. 12 240 [26] Sagasta E, Omori Y, Isasa M, Gradhand M, Hueso Luis E, Niimi Y, Otani Y and Casanova F 2016 Phys. Rev. B 94 060412 [27] Althammer M, Meyer S, Nakayama H, Schreier M, Altmannshofer S, Weiler M, Huebl H, Geprägs S, Opel M, Gross R, Meier D, Klewe C, Kuschel T, Schmalhorst J M, Reiss G, Shen L, Gupta A, Chen Y T, Bauer G E W, Saitoh E and Goennenwein S T B 2013 Phys. Rev. B 87 224401 [28] Bose A, Singh H, Kushwaha V K, Bhuktare S, Dutta S and Tulapurkar A A 2018 Phys. Rev. Appl. 9 014022 [29] Sala G and Gambardella P 2022 Phys. Rev. Res. 4 033037 [30] Du C, Wang H, Yang F and Hammel P C 2014 Phys. Rev. B 90 140407 [31] Liao L, Xue F, Han L, Kim J, Zhang R, Li L, Liu J, Kou X, Song C, Pan F and Otani Y 2022 Phys. Rev. B 105 104434 [32] Zheng Z C, Guo Q X, Jo D, Go D, Wang L H, Chen H C, Yin W, Wang X M, Yu G H, He W, Lee H W, Teng J and Zhu T 2020 Phys. Rev. Res. 2 013127 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|