Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 126103    DOI: 10.1088/1674-1056/ac785a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Impact of incident direction on neutron-induced single-bit and multiple-cell upsets in 14 nm FinFET and 65 nm planar SRAMs

Shao-Hua Yang(杨少华)1,2, Zhan-Gang Zhang(张战刚)2,†, Zhi-Feng Lei(雷志锋)2, Yun Huang(黄云)2, Kai Xi(习凯)3, Song-Lin Wang(王松林)4,5, Tian-Jiao Liang(梁天骄)4,5, Teng Tong(童腾)4, Xiao-Hui Li(李晓辉)4, Chao Peng(彭超)2, Fu-Gen Wu(吴福根)1, and Bin Li(李斌)6
1 School of Physics and Optoeletronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
2 Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510370, China;
3 Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
4 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
5 Spallation Neutron Source Science Center, Dongguan 523803, China
Abstract  Based on the BL09 terminal of China Spallation Neutron Source (CSNS), single event upset (SEU) cross sections of 14 nm fin field-effect transistor (FinFET) and 65 nm quad data rate (QDR) static random-access memories (SRAMs) are obtained under different incident directions of neutrons: front, back and side. It is found that, for both technology nodes, the "worst direction" corresponds to the case that neutrons traverse package and metallization before reaching the sensitive volume. The SEU cross section under the worst direction is 1.7-4.7 times higher than those under other incident directions. While for multiple-cell upset (MCU) sensitivity, side incidence is the worst direction, with the highest MCU ratio. The largest MCU for the 14 nm FinFET SRAM involves 8 bits. Monte-Carlo simulations are further performed to reveal the characteristics of neutron induced secondary ions and understand the inner mechanisms.
Keywords:  neutron      fin field-effect transistor (FinFET)      single event upset (SEU)      Monte-Carlo simulation  
Received:  05 December 2021      Revised:  17 April 2022      Accepted manuscript online:  14 June 2022
PACS:  61.80.Hg (Neutron radiation effects)  
  61.82.Fk (Semiconductors)  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  02.50.Ng (Distribution theory and Monte Carlo studies)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2019B010145001), the National Natural Science Foundation of China (Grant Nos. 12075065 and 12175045), and the Applied Fundamental Research Project of Guangzhou City, China (Grant No. 202002030299).
Corresponding Authors:  Zhan-Gang Zhang     E-mail:  zhangangzhang@163.com

Cite this article: 

Shao-Hua Yang(杨少华), Zhan-Gang Zhang(张战刚), Zhi-Feng Lei(雷志锋), Yun Huang(黄云), Kai Xi(习凯), Song-Lin Wang(王松林), Tian-Jiao Liang(梁天骄), Teng Tong(童腾), Xiao-Hui Li(李晓辉), Chao Peng(彭超), Fu-Gen Wu(吴福根), and Bin Li(李斌) Impact of incident direction on neutron-induced single-bit and multiple-cell upsets in 14 nm FinFET and 65 nm planar SRAMs 2022 Chin. Phys. B 31 126103

[1] Bhuva B 2018 IEEE International Electron Devices Meeting (IEDM), December 1-5, 2018, San Francisco, CA, USA, p. 34.4.1
[2] Lei Z F, Zhang Z G, En Y F and Huang Y 2018 Chin. Phys. B 27 066105
[3] JESD89A, Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices, JEDEC standard, October 2006
[4] Kato T, Hashimoto M and Matsuyama H 2020 IEEE Trans. Nucl. Sci. 67 1485
[5] Uemura T, Kato T, Matsuyama H and Hashimoto M 2015 IEEE International Reliability Physics Symposium, April 19-23, 2015, Monterey, CA, USA, p. SE.9.1 DOI:
[6] Tipton A D, Zhu X, Weng H, Pellish J A, Fleming P R, Schrimpf R D, Reed R A, Weller R A and Mendenhall M 2008 IEEE Trans. Device Mater. Rel. 8 565
[7] Harada R, Abe S, Fuketa H, Uemura T, Hashimoto M and Watanabe Y 2012 IEEE Trans. Nucl. Sci. 59 2791
[8] Kato T, Yamazaki T, Saito N and Hashimoto M 2019 IEEE Trans. Nucl. Sci. 66 1381
[9] Abe S, Liao W, Manabe S, Sato T, Hashimoto M and Watanabe Y 2019 IEEE Trans. Nucl. Sci. 66 1374
[10] Zhang Z, Lei Z, Tong T, Li X, Xi K, Peng C, Shi Q, He Y, Huang Y and En Y 2019 IEEE Trans. Nucl. Sci. 66 1368
[11] Zhang Z G, Lei Z F, Tong T, Li X H, Wang S L, Liang T J, Xi K, Peng C, He Y J, Huang Y and En Y F 2020 Acta Phys. Sin. 69 056101 (in Chinese)
[12] Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Meth. Phys. Res. A 506 250
[13] Baumann R C and Smith E B 2001 Microelectron. Reliab. 41 211
[1] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[2] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[3] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[4] Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
Dong-Qing Li(李东青), Tian-Qi Liu(刘天奇), Pei-Xiong Zhao(赵培雄), Zhen-Yu Wu(吴振宇), Tie-Shan Wang(王铁山), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(5): 056106.
[5] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[6] A simple analytical model of laser direct-drive thin shell target implosion
Bo Yu(余波), Tianxuan Huang(黄天晅), Li Yao(姚立), Chuankui Sun(孙传奎), Wanli Shang(尚万里), Peng Wang(王鹏), Xiaoshi Peng(彭晓世), Qi Tang(唐琦), Zifeng Song(宋仔峰), Wei Jiang(蒋炜), Zhongjing Chen(陈忠靖), Yudong Pu(蒲昱东), Ji Yan(晏骥), Yunsong Dong(董云松), Jiamin Yang(杨家敏), Yongkun Ding(丁永坤), and Jian Zheng(郑坚). Chin. Phys. B, 2022, 31(4): 045204.
[7] Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility
Xin-Xiang Li(李鑫祥), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Hong-Wei Wang(王宏伟), Gong-Tao Fan(范功涛), Jian-Jun He(何建军), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙),Yue Zhang(张岳), Xin-Rong Hu(胡新荣), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Bing Jiang(姜炳),Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Jin-Cheng Wang(王金成), De-Xin Wang(王德鑫),Su-Yalatu Zhang(张苏雅拉吐), Ying-Du Liu(刘应都), Xu Ma(麻旭), Chun-Wang Ma(马春旺),Yu-Ting Wang(王玉廷), Zhen-Dong An(安振东), Jun Su(苏俊), Li-Yong Zhang(张立勇),Yu-Xuan Yang(杨宇萱), Wen-Bo Liu(刘文博), Wan-Qing Su(苏琬晴),Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(3): 038204.
[8] First neutron Bragg-edge imaging experimental results at CSNS
Jie Chen(陈洁), Zhijian Tan(谭志坚), Weiqiang Liu(刘玮强), Sihao Deng(邓司浩), Shengxiang Wang(王声翔), Liyi Wang(王立毅), Haibiao Zheng(郑海彪), Huaile Lu(卢怀乐), Feiran Shen(沈斐然), Jiazheng Hao(郝嘉政), Xiaojuan Zhou(周晓娟), Jianrong Zhou(周健荣), Zhijia Sun(孙志嘉), Lunhua He(何伦华), and Tianjiao Liang(梁天骄). Chin. Phys. B, 2021, 30(9): 096106.
[9] Excess-iron driven spin glass phase in Fe1+yTe1-xSex
Long Tian(田龙), Panpan Liu(刘盼盼), Tao Hong(洪涛), Tilo Seydel, Xingye Lu(鲁兴业), Huiqian Luo(罗会仟), Shiliang Li(李世亮), and Pengcheng Dai(戴鹏程). Chin. Phys. B, 2021, 30(8): 087402.
[10] Constraints on the kinetic energy of type-Ic supernova explosion from young PSR J1906+0746 in a double neutron star candidate
Yi-Yan Yang(杨佚沿), Cheng-Min Zhang(张承民), Jian-Wei Zhang(张见微), and De-Hua Wang (王德华). Chin. Phys. B, 2021, 30(6): 068703.
[11] Ring artifacts correction based on the projection-field in neutron CT
Sheng-Xiang Wang(王声翔), Jie Chen(陈洁), Zhi-Jian Tan(谭志坚), Si-Hao Deng(邓司浩), Yao-Da Wu(吴耀达), Huai-Le Lu(卢怀乐), Shou-Ding Li(李守定), Wei-Chang Chen(陈卫昌), and Lun-Hua He(何伦华). Chin. Phys. B, 2021, 30(5): 050601.
[12] Neutron-induced single event upset simulation in Geant4 for three-dimensional die-stacked SRAM
Li-Hua Mo(莫莉华), Bing Ye(叶兵), Jie Liu(刘杰), Jie Luo(罗捷), You-Mei Sun(孙友梅), Chang Cai(蔡畅), Dong-Qing Li(李东青), Pei-Xiong Zhao(赵培雄), and Ze He(贺泽). Chin. Phys. B, 2021, 30(3): 036103.
[13] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
[14] Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2
Tao Xie(谢涛), Chang Liu(刘畅), Tom Fennell, Uwe Stuhr, Shi-Liang Li(李世亮), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2021, 30(12): 127402.
[15] Fabrication and performance evaluation of GaN thermal neutron detectors with bm6LiF conversion layer
Zhifu Zhu(朱志甫), Zhijia Sun(孙志嘉), Jijun Zou(邹继军), Bin Tang(唐彬), Qinglei Xiu(修青磊), Renbo Wang(王仁波), Jinhui Qu(瞿金辉), Wenjuan Deng(邓文娟), Shaotang Wang(王少堂), Junbo Peng(彭俊波), Zhidong Wang(王志栋), Bin Tang(汤彬), Haiping Zhang(张海平). Chin. Phys. B, 2020, 29(9): 090401.
No Suggested Reading articles found!