Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 045204    DOI: 10.1088/1674-1056/ac21bd
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

A simple analytical model of laser direct-drive thin shell target implosion

Bo Yu(余波)1,2,†, Tianxuan Huang(黄天晅)2, Li Yao(姚立)2, Chuankui Sun(孙传奎)2, Wanli Shang(尚万里)2, Peng Wang(王鹏)2, Xiaoshi Peng(彭晓世)2, Qi Tang(唐琦)2, Zifeng Song(宋仔峰)2, Wei Jiang(蒋炜)2, Zhongjing Chen(陈忠靖)2, Yudong Pu(蒲昱东)2, Ji Yan(晏骥)2, Yunsong Dong(董云松)2, Jiamin Yang(杨家敏)2, Yongkun Ding(丁永坤)1,3, and Jian Zheng(郑坚)1,4
1 School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China;
2 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
4 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  A high-neutron yield platform imploded by a thin shell target is generally built to probe nuclear science problems, and it has the advantages of high neutron yield, ultrashort fusion time, micro fusion zone, isotropic and monoenergetic neutron. Some analytical models have been proposed to interpret exploding-pusher target implosion driven by a long wavelength laser, whereas they are imperfect for a 0.35 μm laser implosion experiment. When using the 0.35 μm laser, the shell is ablated and accelerated to high implosion velocity governed by Newton's law, ablation acceleration and quasi-adiabatic compression models are suitable to explain the implosion of a laser direct-drive thin shell target. The new analytical model scales bang time, ion temperature and neutron yield for large variations in laser power, target radius, shell thickness, and fuel pressure. The predicted results of the analytical model are in agreement with experimental data on the Shenguang-III prototype laser facility, 100 kJ laser facility, Omega, and NIF, it demonstrates that the analytical model benefits the understanding of experiment performance and optimizing the target design of high neutron yield implosion.
Keywords:  direct drive      analytical model      thin shell target      neutron yield  
Received:  03 July 2021      Revised:  11 August 2021      Accepted manuscript online:  27 August 2021
PACS:  52.57.-z (Laser inertial confinement)  
  52.38.Mf (Laser ablation)  
  24.10.Nz (Hydrodynamic models)  
  29.25.Dz (Neutron sources)  
Fund: The authors would like to thank the staffs of the Shenguang-III prototype and 100 kJ laser facility for their cooperation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11775203 and 12075219) and the Innovation and Development Fund of China Academy of Engineering Physics (Grant No. CX20210019).
Corresponding Authors:  Bo Yu     E-mail:  yubobnu@163.com

Cite this article: 

Bo Yu(余波), Tianxuan Huang(黄天晅), Li Yao(姚立), Chuankui Sun(孙传奎), Wanli Shang(尚万里), Peng Wang(王鹏), Xiaoshi Peng(彭晓世), Qi Tang(唐琦), Zifeng Song(宋仔峰), Wei Jiang(蒋炜), Zhongjing Chen(陈忠靖), Yudong Pu(蒲昱东), Ji Yan(晏骥), Yunsong Dong(董云松), Jiamin Yang(杨家敏), Yongkun Ding(丁永坤), and Jian Zheng(郑坚) A simple analytical model of laser direct-drive thin shell target implosion 2022 Chin. Phys. B 31 045204

[1] Rinderknecht H G, Johnson M G, Zylstra A B, et al. 2012 Rev. Sci. Instrum. 83 10D902
[2] Waugh C J, Rosenberg M J, Zylstra A B, et al. 2015 Rev. Sci. Instrum. 86 053506
[3] Dayton M, Datte P, Carpenter A, et al. 2017 Proc. SPIE 10390 1039007
[4] Casey D T, Sayre D B, Brune C R, et al. 2017 Nat. Phys. 13 1227
[5] Zylstra A B, Frenje J A, Johnson M G, et al. 2017 Phys. Rev. Lett. 119 222701
[6] Frenje J A, Li C K, Seguin F H, et al. 2011 Phys. Rev. Lett. 107 122502
[7] Rinderknecht H G, Rosenberg M J, Li C K, et al. 2015 Phys. Rev. Lett. 114 025001
[8] Kagan G, Svyatskiy D, Rinderknecht H G, et al. 2015 Phys. Rev. Lett. 115 105002
[9] Forrest C J, Radha P B, Knauer J P, et al. 2017 Phys. Rev. Lett. 118 095002
[10] Shan L Q, Cai H B, Zhang W S, et al. 2018 Phys. Rev. Lett. 120 195001
[11] Campbell P M, Charatis G and Montry G R 1975 Phys. Rev. Lett. 34 74
[12] Storm E K, Ahlstrom H G, Boyle M J, et al. 1978 Phys. Rev. Lett. 40 1570
[13] Giovanielli D V and Cranfill C W 1978 Los Alamos Scientific Lab. LA-7218-MS
[14] Rosen M D and Nuckolls J H 1979 Phys. Fluids 22 1393
[15] Ahlborn B and Key M H 1981 Plasma Phys. 23 435
[16] Andreev A A and Solovev N A 1985 Sov. J. Quantum Electron. 15 556
[17] Kitagawa Y, Miyanaga N, Kato Y, et al. 1986 Jpn. J. Appl. Phys. 25 586
[18] Zhang J, Jiang R H and Zeng X C 1988 Nuclear Fusion and Plasma Physics 8 207 (in Chinese)
[19] Craxton R S, Anderson K S, Boehly T R, et al. 2015 Phys. Plasmas 22 110501
[20] Ramis R, Schmalz J and Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475
[21] Lindl J 1995 Phys. Plasmas 2 3933
[22] Yu B, Yang J M, Huang T X, et al. 2019 Chin. Phys. B 28 095203
[23] Herrmann H W, Langenbrunner J R and Mack J M 2009 Phys. Plasmas 16 056312
[24] Rosenberg M J, Zylstra A B, Seguin F H, et al. 2014 Phys. Plasmas 21 122712
[25] Rinderknecht H G, Rosenberg M J, Zylstra A B, et al. 2015 Phys. Plasmas 22 082709
[26] Johnson M G, Zylstra A B, Bacher A, et al. 2017 Phys. Plasmas 24 041407
[27] Wang F, Peng X S, Kang D G, et al. 2013 Chin. Phys. B 22 115204
[28] Soures J M, McCrory R L, Verdon C P, et al. 1996 Phys. Plasmas 3 2108
[29] Chen J B, Zheng Z J, Peng H S, et al. 2001 Rev. Sci. Instrum. 72 3534
[30] Chen J B, Feng J, Zheng Z J, et al. 1995 Nuclear Fusion and Plasma Physics 15 53 (in Chinese)
[31] Song Z F, Chen J B, Tang Q, et al. 2012 High Power Laser Part. Beams 24 1165 (in Chinese)
[32] Song Z F, Tang Q, Chen J B, et al. 2015 High Power Laser Part. Beams 27 112005 (in Chinese)
[1] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[2] First polar direct-drive exploding-pusher target experiments on the ShenGuang laser facility
Bo Yu(余波), Jiamin Yang(杨家敏), Tianxuan Huang(黄天晅), Peng Wang(王鹏), Wanli Shang(尚万里), Xiumei Qiao(乔秀梅), Xuewei Deng(邓学伟), Zhanwen Zhang(张占文), Zifeng Song(宋仔峰), Qi Tang(唐琦), Xiaoshi Peng(彭晓世), Jiabin Chen(陈家斌), Yulong Li(理玉龙), Wei Jiang(蒋炜), Yudong Pu(蒲昱东), Ji Yan(晏骥), Zhongjing Chen(陈忠靖), Yunsong Dong(董云松), Wudi Zheng(郑无敌), Feng Wang(王峰), Shaoen Jiang(江少恩), Yongkun Ding(丁永坤), Jian Zheng(郑坚). Chin. Phys. B, 2019, 28(9): 095203.
[3] Overrun phenomenon and neutron yield in Coulomb explosion of deuterated alkane clusters driven by intense laser field
Hong-Yu Li(李洪玉), Mei-Dong Huang(黄美东), Ming Kang(康明), De-Jun Li(李德军). Chin. Phys. B, 2018, 27(6): 063602.
[4] Analytical model of tilted driver-pickup coils for eddy current nondestructive evaluation
Bing-Hua Cao(曹丙花), Chao Li(李超), Meng-Bao Fan(范孟豹), Bo Ye(叶波), Gui-Yun Tian(田贵云). Chin. Phys. B, 2018, 27(3): 030301.
[5] Modeling of a triple reduced surface field silicon-on-insulator lateral double-diffused metal-oxide-semiconductor field-effect transistor with low on-state resistance
Yu-Ru Wang(王裕如), Yi-He Liu(刘祎鹤), Zhao-Jiang Lin(林兆江), Dong Fang(方冬), Cheng-Zhou Li(李成州), Ming Qiao(乔明), Bo Zhang(张波). Chin. Phys. B, 2016, 25(2): 027305.
[6] Semi-analytical model for quasi-double-layer surface electrode ion traps
Jian Zhang(张见), Shuming Chen(陈书明), Yaohua Wang(王耀华). Chin. Phys. B, 2016, 25(11): 113701.
[7] A two-dimensional fully analytical model with polarization effect for off-state channel potential and electric field distributions of GaN-based field-plated high electron mobility transistor
Mao Wei (毛维), She Wei-Bo (佘伟波), Yang Cui (杨翠), Zhang Chao (张超), Zhang Jin-Cheng (张进成), Ma Xiao-Hua (马晓华), Zhang Jin-Feng (张金风), Liu Hong-Xia (刘红侠), Yang Lin-An (杨林安), Zhang Kai (张凯), Zhao Sheng-Lei (赵胜雷), Chen Yong-He (陈永和), Zheng Xue-Feng (郑雪峰), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(8): 087305.
[8] A two-dimensional analytical subthreshold behavior model for junctionless dual-material cylindrical surrounding-gate MOSFETs
Li Cong (李聪), Zhuang Yi-Qi (庄奕琪), Zhang Li (张丽), Jin Gang (靳刚). Chin. Phys. B, 2014, 23(3): 038502.
[9] A quantum efficiency analytical model for complementary metal–oxide–semiconductor image pixels with a pinned photodiode structure
Cao Chen (曹琛), Zhang Bing (张冰), Wu Long-Sheng (吴龙胜), Li Na (李娜), Wang Jun-Feng (王俊峰). Chin. Phys. B, 2014, 23(12): 124215.
[10] Quasi-two-dimensional threshold voltage model for junctionless cylindrical surrounding gate metal-oxide-semiconductor field-effect transistor with dual-material gate
Li Cong (李聪), Zhuang Yi-Qi (庄奕琪), Zhang Li (张丽), Jin Gang (靳刚). Chin. Phys. B, 2014, 23(1): 018501.
[11] Analytical model including the fringing-induced barrier lowering effect for a dual-material surrounding-gate MOSFET with a high-$\kappa$ gate dielectric
Li Cong(李聪), Zhuang Yi-Qi(庄奕琪), Zhang Li(张丽), and Bao Jun-Lin(包军林) . Chin. Phys. B, 2012, 21(4): 048501.
No Suggested Reading articles found!