Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050601    DOI: 10.1088/1674-1056/abd743
GENERAL Prev   Next  

Ring artifacts correction based on the projection-field in neutron CT

Sheng-Xiang Wang(王声翔)1,2, Jie Chen(陈洁)1,2,†, Zhi-Jian Tan(谭志坚)1,2, Si-Hao Deng(邓司浩)1,2, Yao-Da Wu(吴耀达)1,2, Huai-Le Lu(卢怀乐)1,2, Shou-Ding Li(李守定)4,5,6, Wei-Chang Chen(陈卫昌)4,5,6, and Lun-Hua He(何伦华)1,3,‡
1 Spallation Neutron Source Science Center, Dongguan 523803, China;
2 Institute of High Energy Physics, Chinese Academy of Sciences(CAS), Beijing 100049, China;
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
5 Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
6 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Ring artifacts will happen mostly when the detector has inconsistent response among the detector channels, and the characteristic produced rings centered in the iso-center in the reconstructed slices inevitably affect the recognition and analysis of the corresponding sample structures in neutron computed tomography (CT). In this work, a ring correction method based on the projection-field (RCP) is proposed, it is a pre-processing method and provides the corrected projection data directly, which is also conducive to efficient data storage and other algorithmic researches. Simulation and physical experiments are performed for verifying the effect of the method, and one of the correction methods based on the image-field is used for comparison. The results demonstrate that the RCP can correct the ring artifacts well without reducing the image resolution or over-correction.
Keywords:  ring artifacts correction      neutron CT      projection field  
Received:  18 August 2020      Revised:  21 December 2020      Accepted manuscript online:  30 December 2020
PACS:  06.20.fb (Standards and calibration)  
  07.05.Rm (Data presentation and visualization: algorithms and implementation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0401502 and 2017YFB0701903), the National Natural Science Foundation of China (Grant Nos. U1832219 and 12005166), the Youth Innovation Promotion Association, the Chinese Academy of Sciences (CAS) (Grant No. 2017023), the Guangdong Natural Science Foundation, China (Grant No. 2016A030313129), the Key Research Program of the Institute of Geology & Geophysics, CAS (Grant Nos. IGGCAS-201903 and SZJJ201901), and the Key Research Program, CAS (Grant Nos. YJKYYQ20190043, ZDBS-LY-DQC003, XDA14040401, and KFZD-SW-422).
Corresponding Authors:  Jie Chen, Lun-Hua He     E-mail:;

Cite this article: 

Sheng-Xiang Wang(王声翔), Jie Chen(陈洁), Zhi-Jian Tan(谭志坚), Si-Hao Deng(邓司浩), Yao-Da Wu(吴耀达), Huai-Le Lu(卢怀乐), Shou-Ding Li(李守定), Wei-Chang Chen(陈卫昌), and Lun-Hua He(何伦华) Ring artifacts correction based on the projection-field in neutron CT 2021 Chin. Phys. B 30 050601

[1] Kardjilov N, Hilger A, Manke I, et al. 2005 Nucl. Instrum. Method A 542 16
[2] Manke I, Hartnig C, Grünerbel M, et al. 2007 Appl. Phys. Lett. 90 184101
[3] Riley G V, Hussey D S and Jacobson D 2010 ECS Transactions 25 75
[4] Tötzke C, Kardjilov N, Manke I and Oswald S 2017 Sci. Rep. 7 1
[5] Clark T, Burca G, Boardman R and Blumensath T 2020 Journal of microscopy 277 170
[6] Stavropoulou E, Andó E, Tengattini A, et al. 2018 Acta Geotechnica 14 19
[7] Ziesche R F, Arlt T, Finegan D P, et al. 2020 Nat. Commun. 11 777
[8] Boin M and Haibel A 2006 Opt. Express 14 12071
[9] Ketcham R A 2006 Developments in x-ray tomography V 6318
[10] Asaduzzaman M and Yousuf M A 2009 Journal of Scientific Research. 2 37
[11] Sijbers J and Postnov A 2004 Phys. Med. Biol. 49 N247
[12] Han S, Wu M, Wang H, et al. 2013 Physics Procedia 43 73
[13] Chen J, Kang L, Lu H, et al. 2018 Physica B 551 370
[14] Prell D, Kyriakou Y and Kalender W A 2009 Phys. Med. Biol. 54 3881
[1] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[2] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[3] Real-time frequency transfer system over ground-to-satellite link based on carrier-phase compensation at 10-16 level
Hui-Jian Liang(梁慧剑), Shi-Guang Wang(王时光), Yu Bai(白钰), Si-Chen Sun(孙思忱), and Li-Jun Wang(王力军). Chin. Phys. B, 2021, 30(8): 080601.
[4] Quadruple-stacked Nb/NbxSi1-x/Nb Josephson junctions for large-scale array application
Wenhui Cao(曹文会), Jinjin Li(李劲劲), Lanruo Wang(王兰若), Yuan Zhong(钟源), Qing Zhong(钟青). Chin. Phys. B, 2020, 29(6): 067404.
[5] Optimization of laser focused atomic deposition by channeling
Jie Chen(陈杰), Jie Liu(刘杰), Li Zhu(朱立), Xiao Deng(邓晓), Xinbin Cheng(陈鑫彬), Tongbao Li(李同保). Chin. Phys. B, 2020, 29(2): 020601.
[6] Amorphous Si critical dimension structures with direct Si lattice calibration
Ziruo Wu(吴子若), Yanni Cai(蔡燕妮), Xingrui Wang(王星睿), Longfei Zhang(张龙飞), Xiao Deng(邓晓), Xinbin Cheng(程鑫彬), Tongbao Li(李同保). Chin. Phys. B, 2019, 28(3): 030601.
[7] An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils
Hua Li(李华), Shu-Lin Zhang(张树林), Chao-Xiang Zhang(张朝祥), Xiang-Yan Kong(孔祥燕), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2016, 25(6): 068501.
[8] Developing Josephson junction array chips for microvolt applications
Wenhui Cao(曹文会), Jinjin Li(李劲劲), Yuan Zhong(钟源), Yuan Gao(高原), Honghui Li(李红晖), Zengmin Wang(王曾敏), Qing He(贺青). Chin. Phys. B, 2016, 25(5): 057401.
[9] Standardization of proton-induced x-ray emission technique for analysis of thick samples
Shad Ali, Johar Zeb, Abdul Ahad, Ishfaq Ahmad, M. Haneef, Jehan Akbar. Chin. Phys. B, 2015, 24(9): 090601.
[10] Fabrication and measurement of traceable pitch standard with a big area at trans-scale
Deng Xiao (邓晓), Li Tong-Bao (李同保), Lei Li-Hua (雷李华), Ma Yan (马艳), Ma Rui (马蕊), Weng Jun-Jing (翁浚婧), Li Yuan (李源). Chin. Phys. B, 2014, 23(9): 090601.
[11] Review of chip-scale atomic clocks based on coherent population trapping
Wang Zhong (汪中). Chin. Phys. B, 2014, 23(3): 030601.
[12] Elaborate calibration procedure for cell irradiation at the CAS-LIBB single-particle microbeam
Hu Zhi-Wen (胡智文), Ding Ke-Jian (丁克俭), Yu Liang-Deng (余量登), Zhang Jun (张俊), Wu Li-Jun (吴李君), Yu Zeng-Liang (余增亮). Chin. Phys. B, 2006, 15(4): 659-664.
[13] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[14] Characterization of a nano line width reference material based on metrological scanning electron microscope
Fang Wang(王芳), Yushu Shi(施玉书), Wei Li(李伟), Xiao Deng(邓晓), Xinbin Cheng(程鑫彬), Shu Zhang(张树), and Xixi Yu(余茜茜). Chin. Phys. B, 2022, 31(5): 050601.
No Suggested Reading articles found!