Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120401    DOI: 10.1088/1674-1056/abff28
GENERAL Prev   Next  

Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers

Jianwei Zhang(张见微)1,2, Chengmin Zhang(张承民)1,2,†, Di Li(李菂)1,2,6,‡, Xianghan Cui(崔翔翰)1,2, Wuming Yang(杨伍明)3, Dehua Wang(王德华)4, Yiyan Yang(杨佚沿)5, Shaolan Bi(毕少兰)3, and Xianfei Zhang(张先飞)3
1 CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Astronomy, Beijing Normal University, Beijing 100875, China;
4 School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China;
5 School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China;
6 NAOC-UKZN Computational Astrophysics Centre, University of KwaZulu-Natal, Durban 4000, South Africa
Abstract  LIGO-Virgo has observed the gravitational waves (GWs) from the coalescence of binary black hole (BBH) and binary neutron star (BNS) during O1 and O2, and the ones from NS-BH are expected to be hunted in the operating O3 run. The population properties and mass distribution of NS-BH mergers are poorly understood now, thus researchers simulated their chirp mass ($\mathcal{M}$) distribution by a synthetic model, in which the BHs and NSs were inferred by LIGO-Virgo (O1/O2), and obtained the values in the range of $2.1M_{\odot}<\mathcal{M}<7.3M_{\odot}$. In this paper, we further simulate the GW frequency ($f_{\scriptscriptstyle {\rm GW}}$) distribution of NS-BH mergers by the above-stated synthetic model, with a basic binary system model through the Monte Carlo method. Our results predict that the median with 90% credible intervals is $165_{-64}^{+475}$~Hz in the case of Schwarzschild BH when the system just before merger, and this GW frequency is expected to increase several times in the merger stage, which is lying in the frequency band of LIGO-Virgo, i.e., about 15 ~Hz to a few kHz. Our results provide an important reference for hunting the NS-BH mergers by the on-going O3 run of LIGO-Virgo.
Keywords:  gravitational waves      statistical methods      neutron stars      black holes  
Received:  15 March 2021      Revised:  23 April 2021      Accepted manuscript online:  08 May 2021
PACS:  04.30.-w (Gravitational waves)  
  02.70.Rr (General statistical methods)  
  97.60.Jd (Neutron stars)  
  97.60.Lf (Black holes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11988101, 11773005, U2031203, U1631236, 11703001, U1731238, U1938117, 11725313, and 11721303), the International Partnership Program of Chinese Academy of Sciences (Grant No. 114A11KYSB20160008), and the National Key R&D Program of China (Grant No. 2016YFA0400702), and the Subsidy Project of the National Natural Science Foundation of China (Grant No. 2021GZJ006).
Corresponding Authors:  Chengmin Zhang, Di Li     E-mail:  zhangcm@bao.ac.cn;dili@nao.cas.cn

Cite this article: 

Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞) Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers 2021 Chin. Phys. B 30 120401

[1] Abbott B P et al. 2016 Phys. Rev. Lett. 116 061102
[2] Aasi J et al. 2015 Class. Quantum Grav. 32 074001
[3] Acernese F et al. 2015 Class. Quantum Grav. 32 024001
[4] Abbott B P et al. 2017 Phys. Rev. Lett. 119 161101
[5] Abbott B P et al. 2019 Phys. Rev. X 9 031040
[6] Belczynski K, Holz D E, Bulik T and O'Shaughnessy R 2016 Nature 534 512
[7] Mandel I and de Mink S E 2016 Mon. Not. R. Astron. Soc. 458 2634
[8] Kruckow M U, Tauris T M, Langer N, Kramer M and Izzard R G 2018 Mon. Not. R. Astron. Soc. 481 1908
[9] Eldridge J J, Stanway E R and Tang P N 2019 Mon. Not. R. Astron. Soc. 482 870
[10] Askar A, Szkudlarek M, Gondek-Rosińska D, Giersz M and Bulik T 2017 Mon. Not. R. Astron. Soc. 464 L36
[11] Banerjee S 2018 Mon. Not. R. Astron. Soc. 473 909
[12] Fragione G and Kocsis B 2018 Phys. Rev. Lett. 121 161103
[13] Rodriguez C L, Amaro-Seoane P, Chatterjee S and Rasio F A 2018 Phys. Rev. Lett. 120 151101
[14] Antonini F, Toonen S and Hamers A S 2017 Astrophys. J. 841 77
[15] Silsbee K and Tremaine S 2017 Astrophys. J. 836 39
[16] Fragione G and Loeb A 2019 Mon. Not. R. Astron. Soc. 486 4443
[17] Fragione G and Loeb A 2019 Mon. Not. R. Astron. Soc. 490 4991
[18] Liu B and Lai D 2019 Mon. Not. R. Astron. Soc. 483 4060
[19] Bartos I, Kocsis B, Haiman Z and Márka S 2017 Astrophys. J. 835 165
[20] Stone N C, Metzger B D and Haiman Z 2017 Mon. Not. R. Astron. Soc. 464 946
[21] Zhang J W, Zhang C M, Yang W M, Yang Y Y, Li D, Bi S L and Zhang X F 2020 Phys. Rev. D 101 043018
[22] Bambi C 2018 Annalen der Physik 530 1700430
[23] Blanchet L 2014 Living Rev. Relat. 17 2
[24] Zhong S Y and Liu S 2012 Acta Phys. Sin. 61 120401 (in Chinese)
[25] Zhong S Y, Liu S and Hu S J 2013 Acta Phys. Sin. 62 230401 (in Chinese)
[26] Gamal G L N 2012 Chin. Phys. B 21 060401
[27] Wen D H, Fu H Y and Chen W 2011 Chin. Phys. B 20 060402
[28] Lehner L 2001 Class. Quantum Grav. 18 R25
[29] Pretorius F 2005 Phys. Rev. Lett. 95 121101
[30] Campanelli M, Lousto C O, Marronetti P and Zlochower Y 2006 Phys. Rev. Lett. 96 111101
[31] Baker J G, Centrella J, Choi D I, Koppitz M and van Meter J 2006 Phys. Rev. Lett. 96 111102
[32] Zhang Y, Zhao W, Yuan Y F and Xia T Y 2005 Chin. Phys. Lett. 22 1817
[33] Kerr R P 1963 Phys. Rev. Lett. 11 237
[34] Bambi C 2016 Astrophysics of Black Holes (Berlin:Springer-Verlag) vol. 440
[35] Bambi C 2017 Black Holes:A Laboratory for Testing Strong Gravity (Singapore Pte Ltd.:Springer Nature)
[36] van der Klis M 2004 arXiv:astro-ph/0410551
[37] Zhang C M, Wei Y C, Yin H X, Zhao Y H, Lei Y J, Song L M, Zhang F and Yan Y 2010 Sci. Chin.-Phys. Mech. Astron. 53 114
[38] Robitaille T P et al. 2013 Astron. Astrophys. 558 A33
[39] Virtanen P et al. 2020 Nat. Methods 17 261
[40] Abbott B P et al. 2019 Phys. Rev. X 9 011001
[41] Antoniadis J, Tauris T M, Ozel F, Barr E, Champion D J and Freire P C C 2016 arXiv:1605.01665[astro-ph.HE]
[42] Yang Y Y, Zhang C M, Li D, Chen L, Linghu R F and Zhi Q J 2019 Publ. Astron. Soc. Pacific 131 064201
[43] Zhang J W, Yang Y Y, Zhang C M, Yang W M, Li D, Bi S L and Zhang X F 2019 Mon. Not. R. Astron. Soc. 488 5020
[44] Miller C 2002 Nature 420 31
[45] Zhang C M, Wang J, Zhao Y H, Yin H X, Song L M, Menezes D P, Wickramasinghe D T, Ferrario L and Chardonnet P 2011 Astron. Astrophys. 527 A83
[46] Özel F and Freire P 2016 Annu. Rev. Astron. Astrophys. 54 401
[47] Fernandez N, Ghalsasi A and Profumo S 2019 arXiv:1911.07862[hep-ph]
[48] Bardeen J M, Press W H and Teukolsky S A 1972 Astrophys. J. 178 347
[49] Schwarzschild K 1916 Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916 189
[50] Schwarzschild K 1999 arXiv:physics/9905030[physics.hist-ph]
[51] Pürrer M, Hannam M and Ohme F 2016 Phys. Rev. D 93 084042
[52] Pürrer M, Hannam M, Ajith P and Husa S 2013 Phys. Rev. D 88 064007
[53] Vitale S, Lynch R, Raymond V, Sturani R, Veitch J and Graff P 2017 Phys. Rev. D 95 064053
[54] Abbott B P et al. 2017 Class. Quantum Grav. 34 104002
[55] Abbott B P et al. 2019 Astrophys. J. Lett. 882 L24
[56] Ajith P, Hannam M, Husa S, Chen Y, Brügmann B, Dorband N, Müller D, Ohme F, Pollney D, Reisswig C, Santamaría L and Seiler J 2011 Phys. Rev. Lett. 106 241101
[57] Santamaría L, Ohme F, Ajith P, Brügmann B, Dorband N, Hannam M, Husa S, Mösta P, Pollney D, Reisswig C, Robinson E L, Seiler J and Krishnan B 2010 Phys. Rev. D 82 064016
[58] Racine É 2008 Phys. Rev. D 78 044021
[59] Amaro Seoane P et al., 2013 arXiv:1305.5720[astro-ph.CO]
[60] Amaro Seoane P et al. 2017 arXiv:1702.00786
[61] Kawamura S, Ando M, Seto N, et al. 2011 Class. Quantum Grav. 28 094011
[62] Hobbs G, Archibald A, Arzoumanian Z, et al. 2010 Class. Quantum Grav. 27 084013
[1] Holographic heat engine efficiency of hyperbolic charged black holes
Wei Sun(孙威) and Xian-Hui Ge(葛先辉). Chin. Phys. B, 2021, 30(10): 109501.
[2] Geometry and thermodynamics of smeared Reissner-Nordström black holes in d-dimensional AdS spacetime
Bo-Bing Ye(叶伯兵), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久). Chin. Phys. B, 2017, 26(9): 090202.
[3] High-frequency gravitational waves having large spectral densities and their electromagnetic response
Li Fang-Yu (李芳昱), Wen Hao (文毫), Fang Zhen-Yun (方祯云). Chin. Phys. B, 2013, 22(12): 120402.
[4] Discussion on the event horizon and quantum ergosphere of dynamic rotating black holes in a tunneling framework
Liu Bai-Sheng(刘佰生) and Zhang Jing-Yi(张靖仪) . Chin. Phys. B, 2012, 21(7): 070402.
[5] Impact of neutron star crust on gravitational waves from the axial  w-modes
Wen De-Hua(文德华), Fu Hong-Yang(付宏洋), and Chen Wei(陈伟). Chin. Phys. B, 2011, 20(6): 060402.
[6] Fermion tunneling from squashed black holes in the Gödel universe and charged Kaluza–Klein space–time
Li Hui-Ling(李慧玲) . Chin. Phys. B, 2011, 20(3): 030402.
[7] Nonlinear electrodynamics coupled to teleparallel theory of gravity
Gamal G. L. Nashed. Chin. Phys. B, 2011, 20(2): 020402.
[8] Brane world black holes in teleparallel theory equivalent to general relativity and their Killing vectors, energy, momentum and angular momentum
Gamal G.L. Nashed. Chin. Phys. B, 2010, 19(2): 020401.
[9] Topological aspects in a two-component Bose condensed system in neutron star
Ren Ji-Rong(任继荣) and Guo Heng(郭恒). Chin. Phys. B, 2009, 18(8): 3379-3383.
[10] Noise in a coupling electromagnetic detecting system for high frequency gravitational waves
Li Jin(李瑾), Li Fang-Yu(李芳昱), and Zhong Yuan-Hong(仲元红). Chin. Phys. B, 2009, 18(3): 922-926.
[11] Nuclear energy generation rates on magnetar surfaces
Luo Zhi-Quan(罗志全), Liu Hong-Lin(刘宏林) , Liu Jing-Jing(刘晶晶), and Lai Xiang-Jun(赖祥军). Chin. Phys. B, 2009, 18(1): 377-381.
[12] Subleading terms of thermodynamic quantities around static spherical black holes
Li Gu-Qiang(李固强). Chin. Phys. B, 2009, 18(1): 66-69.
[13] Effect of superstrong magnetic fields on thermonuclear reaction rates on the surface of magnetars
Liu Hong-Lin(刘宏林), Luo Zhi-Quan(罗志全),Lai Xiang-Jun(赖祥军), and Liu Jing-Jing(刘晶晶) . Chin. Phys. B, 2008, 17(6): 2317-2320.
[14] Improved calculation of relic gravitational waves
Zhao Wen(赵文). Chin. Phys. B, 2007, 16(10): 2894-2902.
[15] Nonthermal effect of dilatonic black holes
Lü Jun-Li (吕君丽). Chin. Phys. B, 2005, 14(2): 263-267.
No Suggested Reading articles found!