Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 068703    DOI: 10.1088/1674-1056/abda2c

Constraints on the kinetic energy of type-Ic supernova explosion from young PSR J1906+0746 in a double neutron star candidate

Yi-Yan Yang(杨佚沿)1,†, Cheng-Min Zhang(张承民)2,‡, Jian-Wei Zhang(张见微)3, and De-Hua Wang (王德华)4
1 School of Physics and Electronic Sciences, Guizhou Education University, Guiyang 550018, China;
2 CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences(CAS), Beijing 100012, China;
3 Astronomy Department, Beijing Normal University, Beijing 100875, China;
4 School of Physics and Electronic Sciences, Guizhou Normal University, Guiyang 550001, China
Abstract  So far among the nineteen pairs of detected double neutron star (DNS) systems, it is a usual fact that the first-born recycled pulsar is detected, however the youngest DNS system PSR J1906+0746, with the characteristic age of 113 kyr, is one of the three detected DNS as a non-recycled and second-born NS, which is believed to be formed by an electron capture or a low energy ultra-stripped iron core-collapse supernova (SN) explosion. The SN remnant around PSR J1906+0746 is too dim to be observed by optical telescopes, then its x-ray flux limit has been given by Chandra. A reference pulsar PSR J1509-5850 with the young characteristic age of 154 kyr was chosen as an object of comparison, which has an SN remnant observed by Chandra and is believed to be formed by iron core SN explosion. We impose a restriction on the maximum kinetic energy of electron-capture (EC) SN explosion that induces the formation of PSR J1906+0746. The estimated result is (4-8)×1050 erg (1 erg=10-7 J), which is consistent with that of the published simulations of the EC process, i.e., a lower value than that of the conventional iron core SN explosion of (1-2)×1051 erg. As suggested, EC process for NS formation is pertained to the subluminous type Ic SN by the helium star with ONeMg core, thus for the first time we derived the kinetic energy of EC SN explosion of DNS, which may be reconciled with the recent observation of type Ic SN 2014ft with kinetic energy of 2×1050 erg.
Keywords:  neutron star      pulsar      astrophysics      high energy astrophysical phenomena  
Received:  18 June 2020      Revised:  14 December 2020      Accepted manuscript online:  11 January 2021
PACS: (Energetics) (Encoding, decoding, and transformation) (Noise in the nervous system)  
  87.16.Vy (Ion channels)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1938117, U1731238, 11703003, and 11647114), the International Partnership Program of Chinese Academy of Sciences (Grant No. 114A11KYSB20160008), the National Key Research and Development Program of China (Grant No. 2016YFA0400702), the Guizhou Provincial Science and Technology Foundation (Grant No.[2020]1Y019), and the Project of Guizhou Provincial Education Department (Grant No.[2018]058), the Doctoral Project of Guizhou Education University (Grant No. 2020BS021), and the Key Support Disciplines of Theoretical Physics of Department of Education of Guizhou Province, China (Grant No. ZDXK[2015]38).
Corresponding Authors:  Yi-Yan Yang, Cheng-Min Zhang     E-mail:;

Cite this article: 

Yi-Yan Yang(杨佚沿), Cheng-Min Zhang(张承民), Jian-Wei Zhang(张见微), and De-Hua Wang (王德华) Constraints on the kinetic energy of type-Ic supernova explosion from young PSR J1906+0746 in a double neutron star candidate 2021 Chin. Phys. B 30 068703

[1] Lorimer D R, Stairs I H, Freire P C, Cordes J M, Camilo F, Faulkner A J, Lyne A G, Nice D J, Ransom S M, Arzoumanian Z, Manchester R N, Champion D J, van Leeuwen J, Mclaughlin M A, Ramachandran R, Hessels J W, Vlemmings W, Deshpande A A, Bhat N D, Chatterjee S, Han J L, Gaensler B M, Kasian L, Deneva J S, Reid B, Lazio T J, Kaspi V M, Crawford F, Lommen A N, Backer D C, Kramer M, Stappers B W, Hobbs G B, Possenti A, D'Amico N and Burgay M 2006 ApJ 640 428
[2] van Leeuwen J, Kasian L, Stairs I H, Lorimer D R, Camilo F, Chatterjee S, Cognard I, Desvignes G, Freire P C C, Janssen G H, Kramer M, Lyne A G, Nice D J, Ransom S M, Stappers B W and Weisberg J M 2015 ApJ 798 118
[3] Yang Y Y, Zhang C M, Li D, Wang D H, Pan Y Y, Lingfu R F and Zhou Z W 2017 ApJ 835 185
[4] Huang Y F and Yu Y B 2017 ApJ 848 115
[5] Kuerban A, Geng J J, Huang Y F, Zong H S and Gong H 2020 ApJ 890 41
[6] Kargaltsev O and Pavlov G G 2009 ApJ 702 433
[7] Kramer M and Stairs I H Freire 2008 Ann. Rev. Astron. Astrophys. 46 541
[8] Abbott B P, Abbott R, Abbott T D, et al. 2017 Phys. Rev. Lett. 119 161101
[9] Pol N, McLaughlin M and Lorimer D R 2019 ApJ 870 71
[10] Suzuki T, Toki H and Nomoto K. 2016 ApJ 817 163
[11] van den Heuvel E P J 2017 JApA 38 45
[12] Nomoto K 1984 ApJ 277 791
[13] Dewi J D M, Podsiadlowski P and Sena A 2006 MNRAS 368 1742
[14] De K, Kasliwal M M, Ofek E O, Moriya T J, Burke J, Cao Y, Cenko S B, Doran G B, Duggan G E, Fender R P, Fransson C, Gal-Yam A, Horesh A, Kulkarni S R, Laher R R, Lunnan R, Manulis I, Masci F, Mazzali P A, Nugent P E, Perley D A, Petrushevska T, Piro A L, Rumsey C, Sollerman J, Sullivan M and Taddia F 2018 Science 362 201
[15] Manchester R N, Hobbs G B, Teoh A and Hobbs M 2005 AJ 129 1993
[16] Ferrand G and Safi-Harb S 2012 Advances in Space Research 49 1313
[17] Bhattacharya D and van den Heuvel E. P J 1991 Phys. Rep. 203 1
[18] Tauris T M, Langer N, Moriya T J, Podsiadlowski P, Yoon S C and Blinnikov S I 2013 ApJL 778 L23
[19] Tauris T M, Langer N and Podsiadlowski P 2015 MNRAS 451 2123
[20] Tauris T M, Kramer M, Freire P C C, Wex N, Janka H T, Langer N, Podsiadlowski P, Bozzo E, Chaty S, Kruckow M U, van den Heuvel E P J, Antoniadis J, Breton R P and Champion D J 2017 ApJ 846 170
[21] Dewi J D M, Podsiadlowski P and Pols O R 2005 MNRAS 363 L71
[22] Zhang C. M and Kojima Y. 2006 MNRAS 366 137
[23] Ng C, Kruckow M U, Tauris T M, Lyne A G, Freire P C C, Ridolfi A, Caiazzo I, Heyl J, Kramer M, Cameron A D, Champion D J and Stappers B 2018 MNRAS 476 4315
[24] Burgay M, D'Amico N, Krame M, et al. 2003 Science 426 531
[25] Lyne A G, Burgay M, Kramer M, Possenti A, Manchester RN, Camilo F, McLaughlin M A, Lorimer D R, D'Amico N, Joshi B C, Reynolds J and Freire P C C 2004 Science 303 1153
[26] Gessner A and Janka H T 2018 ApJ 865 61
[27] Hobbs G, Lorimer D R, Lyne A G and Kramer M 2005 MNRAS 360 974
[28] Podsiadlowski Ph, Dewi J D M, Lesaffre P, Miller J C, Newton W G and Stone J R 2005 MNRAS 361 1243
[29] Beniamini P and Piran T 2016 Mon. Not. R. Astron. Soc. 456 4089
[30] Shao Y and Li X D 2018 ApJ 867 124
[31] Janka H T 2017 ApJ 837 84
[32] Andrews J J, Zezas A and Fragos T 2018 ApJS 237 1
[33] Wong T W, Willems B and Kalogera V 2010 ApJ 721 1689
[34] Lattimer J M and Yahil A 1989 ApJ 340 426
[35] Kargaltsev O, Pavlov G G, Klingler N and Rangelov B 2017 J. Plasma Phys. 83 635830501
[36] Klingler N, Kargaltsev O, Rangelov B, Pavlov G G, Posselt B and Ng C Y 2016 ApJ 828 70
[37] Chevalier R A 1977 ApJ 213 52
[38] Woosley S and Janka T 2005 Nat. Phys. 1 147
[1] Chemical bonding in representative astrophysically relevant neutral, cation, and anion HCnH chains
Ioan Baldea. Chin. Phys. B, 2022, 31(12): 123101.
[2] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
[3] Bow shocks formed by a high-speed laser-driven plasma cloud interacting with a cylinder obstacle
Yan-Fei Li(李彦霏), Yu-Tong Li(李玉同), Da-Wei Yuan(袁大伟), Fang Li(李芳), Bao-Jun Zhu(朱保君), Zhe Zhang(张喆), Jia-Yong Zhong(仲佳勇), Bo Han(韩波), Hui-Gang Wei(魏会冈), Xiao-Xing Pei(裴晓星), Jia-Rui Zhao(赵家瑞), Chang Liu(刘畅), Xiao-Xia Yuan(原晓霞), Guo-Qian Liao(廖国前), Yong-Joo Rhee, Xin Lu(鲁欣), Neng Hua(华能), Bao-Qiang Zhu(朱宝强), Jian-Qiang Zhu(朱健强), Zhi-Heng Fang(方智恒), Xiu-Guang Huang(黄秀光), Si-Zu Fu(傅思祖), Gang Zhao(赵刚), Jie Zhang(张杰). Chin. Phys. B, 2017, 26(5): 055202.
[4] Effects of the symmetry energy slope on the axial oscillations of neutron stars
Wen De-Hua (文德华), Zhou Ying (周颖). Chin. Phys. B, 2013, 22(8): 080401.
[5] A set of new nucleon coupling constants and the proto neutron star matter
Zhao Xian-Feng (赵先锋), Jia Huan-Yu (贾焕玉). Chin. Phys. B, 2012, 21(8): 089701.
[6] Impact of neutron star crust on gravitational waves from the axial  w-modes
Wen De-Hua(文德华), Fu Hong-Yang(付宏洋), and Chen Wei(陈伟). Chin. Phys. B, 2011, 20(6): 060402.
[7] Effects of $\sigma^{\ast }$ and $\varPhi$ mesons on the surface redshift of a neutron star
Zhao Xian-Feng(赵先锋) . Chin. Phys. B, 2011, 20(3): 039701.
[8] Effect of superstrong magnetic field on electron screening at the crusts of neutron stars
Liu Jing-Jing(刘晶晶). Chin. Phys. B, 2010, 19(9): 099601.
[9] Topological aspects in a two-component Bose condensed system in neutron star
Ren Ji-Rong(任继荣) and Guo Heng(郭恒). Chin. Phys. B, 2009, 18(8): 3379-3383.
[10] Nuclear energy generation rates on magnetar surfaces
Luo Zhi-Quan(罗志全), Liu Hong-Lin(刘宏林) , Liu Jing-Jing(刘晶晶), and Lai Xiang-Jun(赖祥军). Chin. Phys. B, 2009, 18(1): 377-381.
[11] 3PF2 neutron superfluidity in neutron stars and three-body force effect
Cui Chang-Xi(崔常喜), Zuo Wei(左维), and H. J. Schulze. Chin. Phys. B, 2008, 17(9): 3289-3293.
[12] Effect of superstrong magnetic fields on thermonuclear reaction rates on the surface of magnetars
Liu Hong-Lin(刘宏林), Luo Zhi-Quan(罗志全),Lai Xiang-Jun(赖祥军), and Liu Jing-Jing(刘晶晶) . Chin. Phys. B, 2008, 17(6): 2317-2320.
[13] Re-research on the size of proto-neutron star in core-collapse supernova
Luo Zhi-Quan(罗志全) and Liu Men-Quan(刘门全). Chin. Phys. B, 2008, 17(3): 1147-1151.
[14] Modification of gravitational redshift of x-ray burst produced by pulsar surface magnetoplasma
Zhu Jun(祝俊) and Ji Pei-Yong(季沛勇). Chin. Phys. B, 2008, 17(1): 356-361.
[15] Effect of strong magnetic field on electron capture of iron group nuclei in crusts of neutron stars
Liu Jing-Jing(刘晶晶), Luo Zhi-Quan(罗志全), Liu Hong-Lin(刘宏林), and Lai Xiang-Jun(赖祥军). Chin. Phys. B, 2007, 16(9): 2671-2675.
No Suggested Reading articles found!