Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050702    DOI: 10.1088/1674-1056/ac398e
GENERAL Prev   Next  

A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector

Jianjin Zhou(周建晋)1,2,3,5, Jianrong Zhou(周健荣)2,3,4,†, Xiaojuan Zhou(周晓娟)2,3, Lin Zhu(朱林)2,3,4, Jianqing Yang(杨建清)2,3, Guian Yang(杨桂安)2,3, Yi Zhang(张毅)1, Baowei Ding(丁宝卫)1,‡, Bitao Hu(胡碧涛)1, Zhijia Sun(孙志嘉)2,3,4,§, Limin Duan(段利敏)5, and Yuanbo Chen(陈元柏)2,3,4
1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China;
2 Spallation Neutron Source Science Center, Dongguan 523803, China;
3 State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract  In recent years, gas electron multiplier (GEM) neutron detectors have been developing towards high spatial resolution and high dynamic counting range. We propose a novel concept of an Al stopping layer to enable the detector to achieve sub-millimeter (sub-mm) spatial resolution. The neutron conversion layer is coated with the Al stopping layer to limit the emission angle of ions into the drift region. The short track projection of ions is obtained on the signal readout board, and the detector would get good spatial resolution. The spatial resolutions of the GEM neutron detector with the Al stopping layer are simulated and optimized based on Geant4GarfieldInterface. The spatial resolution of the detector is 0.76 mm and the thermal neutron detection efficiency is about 0.01% when the Al stopping layer is 3.0 μ m thick, the drift region is 2 mm thick, the strip pitch is 600 μ m, and the digital readout is employed. Thus, the GEM neutron detector with a simple detector structure and a fast readout mode is developed to obtain a high spatial resolution and high dynamic counting range. It could be used for the direct measurement of a high-flux neutron beam, such as Bragg transmission imaging, very small-angle scattering neutron detection and neutron beam diagnostic.
Keywords:  high spatial resolution      Al stopping layer      GEM neutron detector      spallation neutron source  
Received:  01 October 2021      Revised:  11 November 2021      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  29.40.Gx (Tracking and position-sensitive detectors)  
  28.20.Pr (Neutron imaging; neutron tomography)  
  61.05.F- (Neutron diffraction and scattering)  
Fund: This work was supported by the National Key R&D Program of China (Grant No.2017YFA0403702),the National Natural Science Foundation of China (Grant Nos.11574123,11775243,12175254,and U2032166),Youth Innovation Promotion Association CAS and Guangdong Basic and Applied Basic Research Foundation (Grant No.2019A1515110217),and the Xie Jialin Foundation,China (Grant No.E1546FU2).
Corresponding Authors:  Jianrong Zhou,E-mail:zhoujr@ihep.ac.cn;Baowei Ding,E-mail:dingbw@lzu.edu.cn;Zhijia Sun,E-mail:sunzj@ihep.ac.cn     E-mail:  zhoujr@ihep.ac.cn;dingbw@lzu.edu.cn;sunzj@ihep.ac.cn
About author:  2021-11-15

Cite this article: 

Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏) A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector 2022 Chin. Phys. B 31 050702

[1] White M 2002 AIP Conf. Proc. 613 15
[2] Thomason J W G 2019 Nucl. Instrum. Methods Phys. Res. Sect. A 917 61
[3] Oyama Y 2006 Nucl. Instrum. Methods Phys. Res. Sect. A 562 548
[4] Chen H S, Chen Y B, Wang F W, Liang T J, Jia X J, Ji Q, Hu C M, He W, Yin W, He K, Zhang B Y and Wang L S 2018 Sci. Rep. 29 2
[5] Sato H, Takada O, Iwase K, Kamiyama T and Kiyanagi Y 2010 J. Phys.: Conf. Ser. 251 012070
[6] Jacques D A and Trewhella J 2010 Protein Sci. 19 642
[7] Croci G, Claps G, Cavenago M, Palma M D, Grosso G, Murtas F, Pasqualotto R, Cippo E P, Pietropaolo A, Rebai M, Tardocchi M, Tollin M and Gorini G 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 720 144
[8] Hendricks R W 1969 Rev. Sci. Instrum. 40 1216
[9] Cho A 2009 Science 326 778
[10] Sauli F 1997 Nucl. Instrum. Methods Phys. Res. Sect. A 386 531
[11] Takahashi H, Mitsuya Y, Fujiwara T and Fushie T 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 724 1
[12] Takeuchi Y, Komiya K, Tamagawa T and Zhou Y 2020 J. Phys.: Conf. Ser. 1498 012011
[13] Zhou J R, Zhou X J, Zhou J J, Jiang X F, Yang J Q, Zhu L, Yang W Q, Yang T, Xu H, Xia Y G, Yang G A, Xie Y G, Huang C Q and Hu B T, Sun Z J and Chen Y B 2020 Nucl. Eng. Technol. 52 1277
[14] Ohshita H, Uno S, Otomo T, Koike T, Murakami T, Satoh S, Sekimoto M and Uchida T 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 623 126
[15] Klein M and Schmidt C J 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 628 9
[16] Croci G, Claps G, Caniello R, Cazzaniga C, Grosso G, Murtas F, Tardocchi M, Vassallo E, Gorini G, Horstmann C, Kampmann R, Nowak G and Stoermer M 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 732 217
[17] Köhli M, Allmendinger F, Häußler W, Schröder T, Klein M, Meven M and Schmidt U 2016 Nucl. Instrum. Methods Phys. Res. Sect. A 828 242
[18] Zhou J R, Zhou X J, Zhou J J, Teng H Y, Yang J Q, Ma Y C, Zhou K, Xia Y G, Xiu Q L, Yang T, Jiang X F, Zhu L, Yang W Q, Yang G A, Xie Y G, Hu B T, Sun Z J and Chen Y B 2020 Nucl. Instrum. Methods Phys. Res. Sect. A 962 163593
[19] Zhou J R, Xiu Q L, Zhou X J, Zhou J J, Ma L L, Schmidt C J, Klein M, Xia Y G, Zhu L, Huang C Q, Sun G G, Hu B T, Sun Z J and Chen Y B 2020 Nucl. Instrum. Methods Phys. Res. Sect. A 953 163051
[20] Zhou J J, Zhou J R, Zhou X J, Zhu L, Wei Y D, Xu H, Guan B J, Wu H Y, Wei K, Yang J Q, Wu X G, Yang G A, Xie Y G, Zhang Y, Wang X H, Ding B W, Hu B T, Sun Z J, Duan L M and Chen Y B 2021 Nucl. Instrum. Methods Phys. Res. Sect. A 995 165129
[21] Pfeiffer D, Resnati F, Birch J, Wilton R H, Höglund C, Hultman L, Iakovidis G, Oliveri E, Oksanen E, Ropelewski L and Thuiner P 2015 J. Instrum. 10 P04004
[22] He Z, He S, Wu H, Xu R, Hu B, Zhang Y and Yang H 2021 J. Instrum. 16 P08020
[23] Pfeiffer D, Keukeleere L D, Azevedo C, Belloni F, Biagi S, Grichine V, Hayen L,. Hanu A R, Hřivnáčová I, Ivanchenko V, Krylov V, Schindler H and Veenhof R 2019 Nucl. Instrum. Methods Phys. Res. Sect. A 935 121
[24] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 268 1818
[25] Agostinelli S, Allison J, Amako K et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250
[26] Schindler H and Veenhof R 2018 Garfield++
[27] Vladimir I, John A, Alexander B et al. 2011 Prog. Nucl. Sci. Technol. 2 898
[28] Biagi S F 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 421 234
[29] Smirnov I B 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 554 474
[30] Brun R and Rademakers F 1997 Nucl. Instrum. Methods Phys. Res. Sect. A 389 81
[1] Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility
Xin-Xiang Li(李鑫祥), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Hong-Wei Wang(王宏伟), Gong-Tao Fan(范功涛), Jian-Jun He(何建军), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙),Yue Zhang(张岳), Xin-Rong Hu(胡新荣), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Bing Jiang(姜炳),Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Jin-Cheng Wang(王金成), De-Xin Wang(王德鑫),Su-Yalatu Zhang(张苏雅拉吐), Ying-Du Liu(刘应都), Xu Ma(麻旭), Chun-Wang Ma(马春旺),Yu-Ting Wang(王玉廷), Zhen-Dong An(安振东), Jun Su(苏俊), Li-Yong Zhang(张立勇),Yu-Xuan Yang(杨宇萱), Wen-Bo Liu(刘文博), Wan-Qing Su(苏琬晴),Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(3): 038204.
[2] First neutron Bragg-edge imaging experimental results at CSNS
Jie Chen(陈洁), Zhijian Tan(谭志坚), Weiqiang Liu(刘玮强), Sihao Deng(邓司浩), Shengxiang Wang(王声翔), Liyi Wang(王立毅), Haibiao Zheng(郑海彪), Huaile Lu(卢怀乐), Feiran Shen(沈斐然), Jiazheng Hao(郝嘉政), Xiaojuan Zhou(周晓娟), Jianrong Zhou(周健荣), Zhijia Sun(孙志嘉), Lunhua He(何伦华), and Tianjiao Liang(梁天骄). Chin. Phys. B, 2021, 30(9): 096106.
[3] Displacement damage in optocouplers induced by high energy neutrons at back-n in China Spallation Neutron Source
Rui Xu(徐瑞), Zu-Jun Wang(王祖军), Yuan-Yuan Xue(薛院院), Hao Ning(宁浩), Min-Bo Liu(刘敏波), Xiao-Qiang Guo(郭晓强), Zhi-Bin Yao(姚志斌), Jiang-Kun Sheng(盛江坤), Wu-Ying Ma(马武英), Guan-Tao Dong(董观涛). Chin. Phys. B, 2020, 29(1): 014210.
[4] Analysis of displacement damage effects on bipolar transistors irradiated by spallation neutrons
Yan Liu(刘岩), Wei Chen(陈伟), Chaohui He(贺朝会), Chunlei Su(苏春垒), Chenhui Wang(王晨辉), Xiaoming Jin(金晓明), Junlin Li(李俊霖), Yuanyuan Xue(薛院院). Chin. Phys. B, 2019, 28(6): 067302.
[5] Neutronic studies of the coupled moderators for spallation neutron sources
Yin Wen (殷雯), Liang Jiu-Qing (梁九卿). Chin. Phys. B, 2005, 14(3): 500-504.
[6] Neutronics studies of solid targets for spallation neutron source using Monte Carlo simulation
Yin Wen (殷雯), Liang Jiu-Qing (梁九卿). Chin. Phys. B, 2003, 12(6): 599-603.
No Suggested Reading articles found!