A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋)1,2,3,5, Jianrong Zhou(周健荣)2,3,4,†, Xiaojuan Zhou(周晓娟)2,3, Lin Zhu(朱林)2,3,4, Jianqing Yang(杨建清)2,3, Guian Yang(杨桂安)2,3, Yi Zhang(张毅)1, Baowei Ding(丁宝卫)1,‡, Bitao Hu(胡碧涛)1, Zhijia Sun(孙志嘉)2,3,4,§, Limin Duan(段利敏)5, and Yuanbo Chen(陈元柏)2,3,4
1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; 2 Spallation Neutron Source Science Center, Dongguan 523803, China; 3 State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China; 5 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract In recent years, gas electron multiplier (GEM) neutron detectors have been developing towards high spatial resolution and high dynamic counting range. We propose a novel concept of an Al stopping layer to enable the detector to achieve sub-millimeter (sub-mm) spatial resolution. The neutron conversion layer is coated with the Al stopping layer to limit the emission angle of ions into the drift region. The short track projection of ions is obtained on the signal readout board, and the detector would get good spatial resolution. The spatial resolutions of the GEM neutron detector with the Al stopping layer are simulated and optimized based on Geant4GarfieldInterface. The spatial resolution of the detector is 0.76 mm and the thermal neutron detection efficiency is about 0.01% when the Al stopping layer is 3.0 μ m thick, the drift region is 2 mm thick, the strip pitch is 600 μ m, and the digital readout is employed. Thus, the GEM neutron detector with a simple detector structure and a fast readout mode is developed to obtain a high spatial resolution and high dynamic counting range. It could be used for the direct measurement of a high-flux neutron beam, such as Bragg transmission imaging, very small-angle scattering neutron detection and neutron beam diagnostic.
Fund: This work was supported by the National Key R&D Program of China (Grant No.2017YFA0403702),the National Natural Science Foundation of China (Grant Nos.11574123,11775243,12175254,and U2032166),Youth Innovation Promotion Association CAS and Guangdong Basic and Applied Basic Research Foundation (Grant No.2019A1515110217),and the Xie Jialin Foundation,China (Grant No.E1546FU2).
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏) A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector 2022 Chin. Phys. B 31 050702
[1] White M 2002 AIP Conf. Proc.613 15 [2] Thomason J W G 2019 Nucl. Instrum. Methods Phys. Res. Sect. A917 61 [3] Oyama Y 2006 Nucl. Instrum. Methods Phys. Res. Sect. A562 548 [4] Chen H S, Chen Y B, Wang F W, Liang T J, Jia X J, Ji Q, Hu C M, He W, Yin W, He K, Zhang B Y and Wang L S 2018 Sci. Rep.29 2 [5] Sato H, Takada O, Iwase K, Kamiyama T and Kiyanagi Y 2010 J. Phys.: Conf. Ser.251 012070 [6] Jacques D A and Trewhella J 2010 Protein Sci.19 642 [7] Croci G, Claps G, Cavenago M, Palma M D, Grosso G, Murtas F, Pasqualotto R, Cippo E P, Pietropaolo A, Rebai M, Tardocchi M, Tollin M and Gorini G 2013 Nucl. Instrum. Methods Phys. Res. Sect. A720 144 [8] Hendricks R W 1969 Rev. Sci. Instrum.40 1216 [9] Cho A 2009 Science326 778 [10] Sauli F 1997 Nucl. Instrum. Methods Phys. Res. Sect. A386 531 [11] Takahashi H, Mitsuya Y, Fujiwara T and Fushie T 2013 Nucl. Instrum. Methods Phys. Res. Sect. A724 1 [12] Takeuchi Y, Komiya K, Tamagawa T and Zhou Y 2020 J. Phys.: Conf. Ser.1498 012011 [13] Zhou J R, Zhou X J, Zhou J J, Jiang X F, Yang J Q, Zhu L, Yang W Q, Yang T, Xu H, Xia Y G, Yang G A, Xie Y G, Huang C Q and Hu B T, Sun Z J and Chen Y B 2020 Nucl. Eng. Technol.52 1277 [14] Ohshita H, Uno S, Otomo T, Koike T, Murakami T, Satoh S, Sekimoto M and Uchida T 2010 Nucl. Instrum. Methods Phys. Res. Sect. A623 126 [15] Klein M and Schmidt C J 2011 Nucl. Instrum. Methods Phys. Res. Sect. A628 9 [16] Croci G, Claps G, Caniello R, Cazzaniga C, Grosso G, Murtas F, Tardocchi M, Vassallo E, Gorini G, Horstmann C, Kampmann R, Nowak G and Stoermer M 2013 Nucl. Instrum. Methods Phys. Res. Sect. A732 217 [17] Köhli M, Allmendinger F, Häußler W, Schröder T, Klein M, Meven M and Schmidt U 2016 Nucl. Instrum. Methods Phys. Res. Sect. A828 242 [18] Zhou J R, Zhou X J, Zhou J J, Teng H Y, Yang J Q, Ma Y C, Zhou K, Xia Y G, Xiu Q L, Yang T, Jiang X F, Zhu L, Yang W Q, Yang G A, Xie Y G, Hu B T, Sun Z J and Chen Y B 2020 Nucl. Instrum. Methods Phys. Res. Sect. A962 163593 [19] Zhou J R, Xiu Q L, Zhou X J, Zhou J J, Ma L L, Schmidt C J, Klein M, Xia Y G, Zhu L, Huang C Q, Sun G G, Hu B T, Sun Z J and Chen Y B 2020 Nucl. Instrum. Methods Phys. Res. Sect. A953 163051 [20] Zhou J J, Zhou J R, Zhou X J, Zhu L, Wei Y D, Xu H, Guan B J, Wu H Y, Wei K, Yang J Q, Wu X G, Yang G A, Xie Y G, Zhang Y, Wang X H, Ding B W, Hu B T, Sun Z J, Duan L M and Chen Y B 2021 Nucl. Instrum. Methods Phys. Res. Sect. A995 165129 [21] Pfeiffer D, Resnati F, Birch J, Wilton R H, Höglund C, Hultman L, Iakovidis G, Oliveri E, Oksanen E, Ropelewski L and Thuiner P 2015 J. Instrum.10 P04004 [22] He Z, He S, Wu H, Xu R, Hu B, Zhang Y and Yang H 2021 J. Instrum.16 P08020 [23] Pfeiffer D, Keukeleere L D, Azevedo C, Belloni F, Biagi S, Grichine V, Hayen L,. Hanu A R, Hřivnáčová I, Ivanchenko V, Krylov V, Schindler H and Veenhof R 2019 Nucl. Instrum. Methods Phys. Res. Sect. A935 121 [24] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. A268 1818 [25] Agostinelli S, Allison J, Amako K et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A506 250 [26] Schindler H and Veenhof R 2018 Garfield++ [27] Vladimir I, John A, Alexander B et al. 2011 Prog. Nucl. Sci. Technol.2 898 [28] Biagi S F 1999 Nucl. Instrum. Methods Phys. Res. Sect. A421 234 [29] Smirnov I B 2005 Nucl. Instrum. Methods Phys. Res. Sect. A554 474 [30] Brun R and Rademakers F 1997 Nucl. Instrum. Methods Phys. Res. Sect. A389 81
[1]
Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility Xin-Xiang Li(李鑫祥), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Hong-Wei Wang(王宏伟), Gong-Tao Fan(范功涛), Jian-Jun He(何建军), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙),Yue Zhang(张岳), Xin-Rong Hu(胡新荣), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Bing Jiang(姜炳),Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Jin-Cheng Wang(王金成), De-Xin Wang(王德鑫),Su-Yalatu Zhang(张苏雅拉吐), Ying-Du Liu(刘应都), Xu Ma(麻旭), Chun-Wang Ma(马春旺),Yu-Ting Wang(王玉廷), Zhen-Dong An(安振东), Jun Su(苏俊), Li-Yong Zhang(张立勇),Yu-Xuan Yang(杨宇萱), Wen-Bo Liu(刘文博), Wan-Qing Su(苏琬晴),Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(3): 038204.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.