|
|
A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector |
Jianjin Zhou(周建晋)1,2,3,5, Jianrong Zhou(周健荣)2,3,4,†, Xiaojuan Zhou(周晓娟)2,3, Lin Zhu(朱林)2,3,4, Jianqing Yang(杨建清)2,3, Guian Yang(杨桂安)2,3, Yi Zhang(张毅)1, Baowei Ding(丁宝卫)1,‡, Bitao Hu(胡碧涛)1, Zhijia Sun(孙志嘉)2,3,4,§, Limin Duan(段利敏)5, and Yuanbo Chen(陈元柏)2,3,4 |
1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; 2 Spallation Neutron Source Science Center, Dongguan 523803, China; 3 State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China; 5 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China |
|
|
Abstract In recent years, gas electron multiplier (GEM) neutron detectors have been developing towards high spatial resolution and high dynamic counting range. We propose a novel concept of an Al stopping layer to enable the detector to achieve sub-millimeter (sub-mm) spatial resolution. The neutron conversion layer is coated with the Al stopping layer to limit the emission angle of ions into the drift region. The short track projection of ions is obtained on the signal readout board, and the detector would get good spatial resolution. The spatial resolutions of the GEM neutron detector with the Al stopping layer are simulated and optimized based on Geant4GarfieldInterface. The spatial resolution of the detector is 0.76 mm and the thermal neutron detection efficiency is about 0.01% when the Al stopping layer is 3.0 μ m thick, the drift region is 2 mm thick, the strip pitch is 600 μ m, and the digital readout is employed. Thus, the GEM neutron detector with a simple detector structure and a fast readout mode is developed to obtain a high spatial resolution and high dynamic counting range. It could be used for the direct measurement of a high-flux neutron beam, such as Bragg transmission imaging, very small-angle scattering neutron detection and neutron beam diagnostic.
|
Received: 01 October 2021
Revised: 11 November 2021
Accepted manuscript online:
|
PACS:
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
29.40.Gx
|
(Tracking and position-sensitive detectors)
|
|
28.20.Pr
|
(Neutron imaging; neutron tomography)
|
|
61.05.F-
|
(Neutron diffraction and scattering)
|
|
Fund: This work was supported by the National Key R&D Program of China (Grant No.2017YFA0403702),the National Natural Science Foundation of China (Grant Nos.11574123,11775243,12175254,and U2032166),Youth Innovation Promotion Association CAS and Guangdong Basic and Applied Basic Research Foundation (Grant No.2019A1515110217),and the Xie Jialin Foundation,China (Grant No.E1546FU2). |
Corresponding Authors:
Jianrong Zhou,E-mail:zhoujr@ihep.ac.cn;Baowei Ding,E-mail:dingbw@lzu.edu.cn;Zhijia Sun,E-mail:sunzj@ihep.ac.cn
E-mail: zhoujr@ihep.ac.cn;dingbw@lzu.edu.cn;sunzj@ihep.ac.cn
|
About author: 2021-11-15 |
Cite this article:
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏) A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector 2022 Chin. Phys. B 31 050702
|
[1] White M 2002 AIP Conf. Proc. 613 15 [2] Thomason J W G 2019 Nucl. Instrum. Methods Phys. Res. Sect. A 917 61 [3] Oyama Y 2006 Nucl. Instrum. Methods Phys. Res. Sect. A 562 548 [4] Chen H S, Chen Y B, Wang F W, Liang T J, Jia X J, Ji Q, Hu C M, He W, Yin W, He K, Zhang B Y and Wang L S 2018 Sci. Rep. 29 2 [5] Sato H, Takada O, Iwase K, Kamiyama T and Kiyanagi Y 2010 J. Phys.: Conf. Ser. 251 012070 [6] Jacques D A and Trewhella J 2010 Protein Sci. 19 642 [7] Croci G, Claps G, Cavenago M, Palma M D, Grosso G, Murtas F, Pasqualotto R, Cippo E P, Pietropaolo A, Rebai M, Tardocchi M, Tollin M and Gorini G 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 720 144 [8] Hendricks R W 1969 Rev. Sci. Instrum. 40 1216 [9] Cho A 2009 Science 326 778 [10] Sauli F 1997 Nucl. Instrum. Methods Phys. Res. Sect. A 386 531 [11] Takahashi H, Mitsuya Y, Fujiwara T and Fushie T 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 724 1 [12] Takeuchi Y, Komiya K, Tamagawa T and Zhou Y 2020 J. Phys.: Conf. Ser. 1498 012011 [13] Zhou J R, Zhou X J, Zhou J J, Jiang X F, Yang J Q, Zhu L, Yang W Q, Yang T, Xu H, Xia Y G, Yang G A, Xie Y G, Huang C Q and Hu B T, Sun Z J and Chen Y B 2020 Nucl. Eng. Technol. 52 1277 [14] Ohshita H, Uno S, Otomo T, Koike T, Murakami T, Satoh S, Sekimoto M and Uchida T 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 623 126 [15] Klein M and Schmidt C J 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 628 9 [16] Croci G, Claps G, Caniello R, Cazzaniga C, Grosso G, Murtas F, Tardocchi M, Vassallo E, Gorini G, Horstmann C, Kampmann R, Nowak G and Stoermer M 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 732 217 [17] Köhli M, Allmendinger F, Häußler W, Schröder T, Klein M, Meven M and Schmidt U 2016 Nucl. Instrum. Methods Phys. Res. Sect. A 828 242 [18] Zhou J R, Zhou X J, Zhou J J, Teng H Y, Yang J Q, Ma Y C, Zhou K, Xia Y G, Xiu Q L, Yang T, Jiang X F, Zhu L, Yang W Q, Yang G A, Xie Y G, Hu B T, Sun Z J and Chen Y B 2020 Nucl. Instrum. Methods Phys. Res. Sect. A 962 163593 [19] Zhou J R, Xiu Q L, Zhou X J, Zhou J J, Ma L L, Schmidt C J, Klein M, Xia Y G, Zhu L, Huang C Q, Sun G G, Hu B T, Sun Z J and Chen Y B 2020 Nucl. Instrum. Methods Phys. Res. Sect. A 953 163051 [20] Zhou J J, Zhou J R, Zhou X J, Zhu L, Wei Y D, Xu H, Guan B J, Wu H Y, Wei K, Yang J Q, Wu X G, Yang G A, Xie Y G, Zhang Y, Wang X H, Ding B W, Hu B T, Sun Z J, Duan L M and Chen Y B 2021 Nucl. Instrum. Methods Phys. Res. Sect. A 995 165129 [21] Pfeiffer D, Resnati F, Birch J, Wilton R H, Höglund C, Hultman L, Iakovidis G, Oliveri E, Oksanen E, Ropelewski L and Thuiner P 2015 J. Instrum. 10 P04004 [22] He Z, He S, Wu H, Xu R, Hu B, Zhang Y and Yang H 2021 J. Instrum. 16 P08020 [23] Pfeiffer D, Keukeleere L D, Azevedo C, Belloni F, Biagi S, Grichine V, Hayen L,. Hanu A R, Hřivnáčová I, Ivanchenko V, Krylov V, Schindler H and Veenhof R 2019 Nucl. Instrum. Methods Phys. Res. Sect. A 935 121 [24] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 268 1818 [25] Agostinelli S, Allison J, Amako K et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250 [26] Schindler H and Veenhof R 2018 Garfield++ [27] Vladimir I, John A, Alexander B et al. 2011 Prog. Nucl. Sci. Technol. 2 898 [28] Biagi S F 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 421 234 [29] Smirnov I B 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 554 474 [30] Brun R and Rademakers F 1997 Nucl. Instrum. Methods Phys. Res. Sect. A 389 81 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|