Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 038204    DOI: 10.1088/1674-1056/ac48fd
DATA PAPER Prev   Next  

Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility

Xin-Xiang Li(李鑫祥)1,2, Long-Xiang Liu(刘龙祥)1,3, Wei Jiang(蒋伟)4,5, Jie Ren(任杰)6, Hong-Wei Wang(王宏伟)1,2,3,†, Gong-Tao Fan(范功涛)1,2,3,‡, Jian-Jun He(何建军)7,8, Xi-Guang Cao(曹喜光)1,2,3, Long-Long Song(宋龙龙)3, Yue Zhang(张岳)4,5, Xin-Rong Hu(胡新荣)1,2, Zi-Rui Hao(郝子锐)1,2, Pan Kuang(匡攀)1,2, Bing Jiang(姜炳)1,2, Xiao-He Wang(王小鹤)1, Ji-Feng Hu(胡继峰)1, Jin-Cheng Wang(王金成)9, De-Xin Wang(王德鑫)9, Su-Yalatu Zhang(张苏雅拉吐)9, Ying-Du Liu(刘应都)10, Xu Ma(麻旭)10, Chun-Wang Ma(马春旺)11, Yu-Ting Wang(王玉廷)11, Zhen-Dong An(安振东)1,12, Jun Su(苏俊)7,8, Li-Yong Zhang(张立勇)7,8, Yu-Xuan Yang(杨宇萱)1, Wen-Bo Liu(刘文博)1,11, Wan-Qing Su(苏琬晴)1,11, Sheng Jin(金晟)1,2, and Kai-Jie Chen(陈开杰)1,13
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
4 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
5 China Spallation Neutron Source, Dongguan 523803, China;
6 China Institute of Atomic Energy, Beijing 102413, China;
7 Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
8 Beijing Radiation Center, Beijing 100875, China;
9 College of Mathematics and Physics, Inner Mongolia Minzu University, Tongliao 028000, China;
10 Xiangtan University, Xiangtan 411105, China;
11 Henan Normal University, Xinxiang 453007, China;
12 Sun Yat-sen University, Zhuhai 510275, China;
13 ShanghaiTech University, Shanghai 200120, China
Abstract  Silver indium cadmium (Ag-In-Cd) control rod is widely used in pressurized water reactor nuclear power plants, and it is continuously consumed in a high neutron flux environment. The mass ratio of 107Ag in the Ag-In-Cd control rod is 41.44%. To accurately calculate the consumption value of the control rod, a reliable neutron reaction cross section of the 107Ag is required. Meanwhile, 107Ag is also an important weak r nucleus. Thus, the cross sections for neutron induced interactions with 107Ag are very important both in nuclear energy and nuclear astrophysics. The (n,γ) cross section of 107Ag has been measured in the energy range of 1-60 eV using a back streaming white neutron beam line at China spallation neutron source. The resonance parameters are extracted by an R-matrix code. All the cross section of 107Ag and resonance parameters are given in this paper as datasets. The datasets are openly available at http://www.doi.org/10.11922/sciencedb.j00113.00010.
Keywords:  neutron capture cross section      pulse height weighting technique (PHWT)      107Ag (n,γ)108Ag      the China spallation neutron source (CSNS) Back-n facility  
Received:  07 December 2021      Revised:  31 December 2021      Accepted manuscript online:  07 January 2022
PACS:  82.20.Pm (Rate constants, reaction cross sections, and activation energies)  
  28.20.Np (Neutron capture γ-rays)  
  27.60.+j (90 ≤ A ≤ 149)  
  07.05.Kf (Data analysis: algorithms and implementation; data management)  
Fund: We appreciate useful communications from Prof. GuiLin Zhang at Shanghai Institute of Applied Physics, Chinese Academy of Sciences (SINAP), and effective technical support from Dr. Yi-Jie Wang at Tsinghua University, Ms. Wen-Yi Huang at HUST and Mr. Jun-Wen Wang at development and reform bureau of Shuangliu district, Chengdu. We also greatly appreciate the efforts of the staff of the CSNS and Backn collaboration. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11875311, 11905274, 1705156, U2032146, 11865010, 11765015, and 1160509), the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2019JQ01 and 2018MS01009), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB34030000).
Corresponding Authors:  Gong-Tao Fan     E-mail:  wanghongwei@zjlab.org.cn;fangongtao@zjlab.org.cn

Cite this article: 

Xin-Xiang Li(李鑫祥), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Hong-Wei Wang(王宏伟), Gong-Tao Fan(范功涛), Jian-Jun He(何建军), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙),Yue Zhang(张岳), Xin-Rong Hu(胡新荣), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Bing Jiang(姜炳),Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Jin-Cheng Wang(王金成), De-Xin Wang(王德鑫),Su-Yalatu Zhang(张苏雅拉吐), Ying-Du Liu(刘应都), Xu Ma(麻旭), Chun-Wang Ma(马春旺),Yu-Ting Wang(王玉廷), Zhen-Dong An(安振东), Jun Su(苏俊), Li-Yong Zhang(张立勇),Yu-Xuan Yang(杨宇萱), Wen-Bo Liu(刘文博), Wan-Qing Su(苏琬晴),Sheng Jin(金晟), and Kai-Jie Chen(陈开杰) Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility 2022 Chin. Phys. B 31 038204

[1] Lin M, Cheng M S and Dai Z M 2013 Nucl. Sci. Tech. 31 33
[2] Faisal Q, Muhammad R A, Awais Z, et al. 2006 Nucl. Sci. Tech. 30 63
[3] Veshchunov M S and Hofmann P 1994 J. Nucl. Mater. 209 1
[4] Reifarth R, Lederer C, Kappeler F, et al. 2014 J. Phys. G:Nucl. Part. Phys. 41 053101
[5] Thielemann F K, Arcones A, Kppeli R, et al. 2011 Prog. Part. Nucl. Phys. 66 346
[6] Christlieb N, Beers T C, Barklem P S, et al. 2004 Astron. Astrophys. 428 1027
[7] Hansen C J, Primas F, Hartman H, et al. 2012 Astron. Astrophys. 545 A31
[8] Arbocco F F, Vermaercke P, Smits K, et al. 2013 J. Radioanal. Nucl. Chem. 296 931
[9] Ryves T B 1971 J. Nucl. Eng. 25 3
[10] Lyon W S and Macklin R L 1959 Phys. Rev. 114 1619
[11] Johnsrud A E, Silbert M G and Barschall H H 1959 Phys. Rev. 116 927
[12] Beghian L E and Halban H H 1949 Nature 163 366
[13] Macklin R L 1982 Nucl. Sci. Eng. 82 400
[14] Hughes D J, Garth R C and Levin J S 1953 Phys. Rev. 91 1423
[15] Hughes D J, Spatz W D B and Goldstein N 1949 Phys. Rev. 75 1781
[16] Beer H, Rupp G, Walter G, et al. 1994 Nucl. Instrum. Methods. Phys. Res. A 337 492
[17] Pomerance H 1952 Phys. Rev. 88 412
[18] Lowie L Y, Bowman J D, Corvi F, et al. 1999 Phys. Rev. C 59 1119
[19] von Halban Jun H and Kowarski L 1938 Nature 142 392
[20] Leo Seren, Herbert N F and Solomon H T 1947 Phys. Rev. 72 888
[21] Szentmiklǒsi L, Rěvay Z S and Belgya T 2006 Nucl. Instrum. Methods. Phys. Res. A 564 655
[22] Šalamon L, Geslot B, Heyse J, et al. 2019 Nucl. Instrum. Methods. Phys. Res. B 446 19
[23] Chen H and Wang X L 2016 Nat. Mater. 15 689
[24] Yu J B, Chen J X, Kang L, et al. 2017 Nucl. Sci. Tech. 28 46
[25] Jin X M, Liu Y, Su C L, et al. 2019 Nucl. Sci. Tech. 30 143
[26] Xiao R, Liu Y F, Ni X J, et al. 2017 Nucl. Sci. Tech. 28 109
[27] Huang C Y, Zhang J P, Ye F, et al. 2021 Chin. Phys. Lett. 38 092801
[28] Qin Z C, Huang C Y, Buck Z N, et al. 2021 Chin. Phys. Lett. 38 052801
[29] Chen J, Tan Z J, Liu W Q, et al. 2021 Chin. Phys. B 30 096106
[30] An Q, Bai H Y, Bao J, et al. 2017 J. Instrum. 12 P07022
[31] Xu R, Wang Z J, Xue Y Y, et al. 2020 Chin. Phys. B 29 014210
[32] Ren J, Ruan X C and Bao J 2019 Radiat. Detect. Technol. Methods. 3 52
[33] Tang J Y, An Q, Bai J B, et al. 2021 Nucl. Sci. Tech. 32 11
[34] Li X X, Liu L X, Jiang W, et al. 2021 Phys. Rev. C. 104 054302
[35] Li Q, Luan G Y, Bao J, et al. 2019 Nucl. Instrum. Methods. Phys. Res. A 946 162497
[36] Jin M T, Xu S Y and Su J 2021 Nucl. Sci. Tech. 32 96
[37] Li X X, Liu L X, Jiang W, et al. 2020 Nucl. Tech. 43 8 (in Chinese)
[38] Hu X R, Liu L X, Jiang W, et al. 2021 Nucl. Sci. Tech. 32 101
[39] Ren J, Ruan X C, Jiang W, et al. 2021 Nucl. Instrum. Methods. Phys. Res. A 985 164703
[40] Gibbons J H and Macklin R L 1967 Science 156 3778
[41] Borella A, Aerts G, Gunsing F, et al. 2007 Nucl. Instrum. Methods. Phys. Res. A 577 626
[42] Macklin R L and Gibbons J H 1967 Phys. Rev. 159 1007
[43] Massimi C, Domingo-Pardo C, Vannini G, et al. 2010 Phys. Rev. C 81 044616
[44] Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Methods. Phys. Res. A 506 250
[45] Tain J L, Gunsing F, Aniel-Cano D, et al. 2002 J. Nucl. Sci. Technol. 39 689
[46] Chen Y H, Luan G Y, Bao J, et al. 2019 Eur. Phys. J. A 55 115
[47] Jiang B, Han J L, Jiang W, et al. 2021 Nucl. Instrum. Methods. Phys. Res. A 1013 165677
[48] Hockenbury R W, Bartolome Z M, Tatarczuk J R, et al. 1969 Phys. Rev. 178 1746
[49] Gawlik A, Lederer-Woods C, Andrzejewski J, et al. 2019 Phys. Rev. C 100 045804
[1] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[2] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[3] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[4] Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method
Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(6): 068103.
[5] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[6] Theoretical study of stereodynamics for the D'+DS(ν = 0,j = 0)→D'D+S abstraction reaction
Guo Ya-Hui (郭雅慧), Zhang Feng-Yun (张凤昀), Ma Hong-Zhang (马红章). Chin. Phys. B, 2013, 22(5): 053402.
[7] Quasi-classical trajectory study of the stereodynamics of a Ne+H2+→NeH++H reaction
Ge Mei-Hua(葛美华) and Zheng Yu-Jun(郑雨军). Chin. Phys. B, 2011, 20(8): 083401.
[8] Effect of reagent vibrational excitation and isotope substitution on the stereo-dynamics of the Ba + HF → BaF + H reaction
Zhao Juan(赵娟) and Luo Yi(罗一) . Chin. Phys. B, 2011, 20(4): 043402.
[9] Kinetics of aggregation growth with competition between catalyzed birth and catalyzed death
Wang Hai-Feng(王海锋), Lin Zhen-Quan(林振权), and Gao Yan(高艳). Chin. Phys. B, 2008, 17(4): 1490-1500.
[10] Aggregation processes with catalysis-driven monomer birth/death
Chen Yu(陈玉), Han An-Jia(韩安家), Ke Jian-Hong(柯见洪), and Lin Zhen-Quan(林振权). Chin. Phys. B, 2006, 15(8): 1896-1902.
[11] Competition between aggregation and migration processes of a multi-species system
Ke Jian-Hong (柯见洪), Zhuang You-Yi (庄友谊), Lin Zhen-Quan (林振权), Ye Peng (叶鹏). Chin. Phys. B, 2005, 14(12): 2602-2608.
[12] Aggregate growth driven by monomer transfer
Ke Jian-Hong (柯见洪), Zhuang You-Yi (庄友谊), Lin Zhen-Quan (林振权). Chin. Phys. B, 2005, 14(8): 1676-1682.
[13] Dynamics of aggregation-annihilation process with cluster removals
Wang Xiang-Hong (王向红), Ke Jian-Hong (柯见洪), Lin Zhen-Quan (林振权) (林振权). Chin. Phys. B, 2004, 13(5): 765-771.
[14] Kinetic behaviour of two-species-group aggregation process with complete annihilation
Ke Jian-Hong (柯见洪), Lin Zhen-Quan (林振权), Wang Xiang-Hong (王向红). Chin. Phys. B, 2003, 12(4): 443-451.
[15] Time-dependent quantum dynamics study for reaction of D+CH4→CH3+HD
Liu Xin-Guo (刘新国), Zhang Qing-Gang (张庆刚), Zhang Yi-Ci (张怿慈), Wang Ming-Liang (王明良), John Zhang Zeng-Hui (张增辉). Chin. Phys. B, 2004, 13(7): 1013-1017.
No Suggested Reading articles found!