Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 126301    DOI: 10.1088/1674-1056/ac935d
Special Issue: TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B Prev   Next  

Advances of phononics in 2012—2022

Ya-Fei Ding(丁亚飞)1, Gui-Mei Zhu(朱桂妹)2,†, Xiang-Ying Shen(沈翔瀛)1,‡, Xue Bai(柏雪)3,§, and Bao-Wen Li(李保文)1,4,5,6
1 Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
2 Bourida LLC, Qingdao 264000, China;
3 Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
4 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China;
5 International Quantum Academy, Shenzhen 518048, China;
6 Paul M Rady Department of Mechanical Engineering and Department of Physics, University of Colorado, Boulder, Colorado 80305-0427, USA
Abstract  Due to its great potential applications in thermal management, heat control, and quantum information, phononics has gained increasing attentions since the first publication in Rev. Mod. Phys. 84 1045 (2012). Many theoretical and experimental progresses have been achieved in the past decade. In this paper, we first give a critical review of the progress in thermal diodes and transistors, especially in classical regime. Then, we give a brief introduction to the new developing research directions such as topological phononics and quantum phononics. In the third part, we discuss the potential applications. Last but not least, we point out the outlook and challenges ahead.
Keywords:  phononics      thermal diode      thermal transistor      thermal control devices  
Received:  15 July 2022      Revised:  14 September 2022      Accepted manuscript online:  21 September 2022
PACS:  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.20.-e (Phonons in crystal lattices)  
Fund: XB is supported by the National Natural Science Foundation of China (Grant No. 62004211) and Shenzhen Science and Technology Program (Grant No. RCBS20200714114858221).
Corresponding Authors:  Gui-Mei Zhu, Xiang-Ying Shen, Xiang-Ying Shen     E-mail:;;

Cite this article: 

Ya-Fei Ding(丁亚飞), Gui-Mei Zhu(朱桂妹), Xiang-Ying Shen(沈翔瀛),Xue Bai(柏雪), and Bao-Wen Li(李保文) Advances of phononics in 2012—2022 2022 Chin. Phys. B 31 126301

[1] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1
[2] Li N B, Ren J, Wang L, Zhang G, Hänggi P and Li B W 2012 Rev. Mod. Phys. 84 1045
[3] Terraneo M, Peyrard M and Casati G 2002 Phys. Rev. Lett. 88 094302
[4] Li B W, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[5] Chen S, Pereira E and Casati G 2015 Europhys. Lett. 111 30004
[6] Pereira E 2019 Europhys. Lett. 126 14001
[7] Shimokusu T J, Zhu Q, Rivera N and Wehmeyer G 2022 Int. J. Heat Mass Transf. 182 122035
[8] Wong M Y, Tso C Y, Ho T C and Lee H H 2021 Int. J. Heat Mass Transf. 164 120607
[9] Li B W, Wang L and Casati G 2006 Appl. Phys. Lett. 88 143501
[10] Gupt N, Bhattacharyya S, Das B, Datta S, Mukherjee V and Ghosh A arXiv: 2204.06178 [quant-ph]
[11] Zhang Y C, Yang Z M, Zhang X, Lin B H, Lin G X and Chen J C 2018 Europhys. Lett. 122 17002
[12] Sklan S R and Li B W 2018 J. Appl. Phys. 123 224505
[13] Sood A, Xiong F, Chen S, Wang H, Selli D, Zhang J, McClellan C J, Sun J, Donadio D, Cui Y, Pop E and Goodson K E 2018 Nat. Commun. 9 4510
[14] Joulain K, Drevillon J, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601
[15] Wang L and Li B W 2007 Phys. Rev. Lett. 99 177208
[16] Hamed A, Elzouka M and Ndao S 2019 Int. J. Heat Mass Transf. 134 359
[17] Wang L and Li B W 2008 Phys. Rev. Lett. 101 267203
[18] Kubytskyi V, Biehs S A and Ben-Abdallah P 2014 Phys. Rev. Lett. 113 074301
[19] Kimling J, Wilson R B, Rott K, Kimling J, Reiss G and Cahill D G 2015 Phys. Rev. B 91 144405
[20] Langenberg E, Saha D, Holtz M E, Wang J J, Bugallo D, Ferreiro-Vila E, Paik H, Hanke I, Ganschow S, Muller D A, Chen L Q, Catalan G, Domingo N, Malen J, Schlom D G and Rivadulla F 2019 Nano Lett. 19 8001
[21] Laws A D, Chang Y J, Bright V M and Lee Y C 2008 J. Electron. Packaging 130 021011
[22] Du T, Xiong Z, Delgado L, Liao W, Peoples J, Kantharaj R, Chowdhury P R, Marconnet A and Ruan X 2021 Nat. Commun. 12 4915
[23] Acar C and Dincer I 2019 Energy Storage 1 e47
[24] Tso C Y and Chao C Y H 2016 Int. J. Heat Mass Transf. 93 605
[25] Swoboda T, Klinar K, Yalamarthy A S, Kitanovski A and Rojo M M 2021 Adv. Electron. Mater. 7 2000625
[26] Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H and Chen J 2017 Nat. Commun. 8 15843
[27] Shrestha R, Luan Y, Luo X, Shin S, Zhang T, Smith P, Gong W, Bockstaller M, Luo T, Chen R, Hippalgaonkar K and Shen S 2020 Nat. Commun. 11 4346
[28] Li Y, Shen X, Wu Z, Huang J, Chen Y, Ni Y and Huang J 2015 Phys. Rev. Lett. 115 195503
[29] Westwood M, Zhao X, Chen Z and Dames C 2021 Joule 5 2223
[30] Liu Y Z, Xu Y, Zhang S C and Duan W H 2017 Phys. Rev. B 96 064106
[31] Ruan Q and Wang L 2020 Phys. Rev. Res. 2 023087
[32] Wong M Y, Tso C Y, Ho T C and Lee H H 2021 Int. J. Heat Mass Transf. 164 120607
[33] Li B W, Lan J and Wang L 2005 Phys. Rev. Lett. 95 104302
[34] Romero-Bastida M, Miranda-Pena J O and Lopez J M 2017 Phys. Rev. E 95 032146
[35] Chen S, Donadio D, Benenti G and Casati G 2018 Phys. Rev. E 97 030101
[36] Alexander T J 2020 Phys. Rev. E 101 062122
[37] Hu B, Yang L and Zhang Y 2006 Phys. Rev. Lett. 97 124302
[38] Romero-Bastida M and Lindero-Hernandez M 2021 Phys. Rev. E 104 044135
[39] Simon M A, Alana A, Pons M, Ruiz-Garcia A and Muga J G 2021 Phys. Rev. E 103 012134
[40] Kalantar N, Agarwalla B K and Segal D 2021 Phys. Rev. E 103 052130
[41] Lan J H and Li B W 2006 Phys. Rev. B 74 214305
[42] Lan J H and Li B W 2007 Phys. Rev. B 75 214302
[43] Otey C R, Lau W T and Fan S 2010 Phys. Rev. Lett. 104 154301
[44] Wang K and Gao L 2020 ES Energy & Environment 7 12
[45] Martinez-Perez M J, Fornieri A and Giazotto F 2015 Nat. Nanotechnol. 10 303
[46] Giazotto F and Bergeret F S 2013 Appl. Phys. Lett. 103 242602
[47] Kargi C, Naseem M T, Opatrny T, Mustecaplioglu O E and Kurizki G 2019 Phys. Rev. E 99 042121
[48] Liang B, Yuan B and Cheng J C 2009 Phys. Rev. Lett. 103 104301
[49] Liang B, Guo X S, Tu J, Zhang D and Cheng J C 2010 Nat. Mater. 9 989
[50] Liu Y, Tian Y P, Chen F Q, Caratenuto A, Liu X J, Antezza M and Zheng Y 2021 Appl. Phys. Lett. 119 123101
[51] Fiorino A, Thompson D, Zhu L, Mittapally R, Biehs S A, Bezencenet O, El-Bondry N, Bansropun S, Ben-Abdallah P, Meyhofer E and Reddy P 2018 ACS Nano 12 5774
[52] Ghanekar A, Xiao G and Zheng Y 2017 Sci. Rep. 7 6339
[53] Boechler N, Theocharis G and Daraio C 2011 Nat. Mater. 10 665
[54] Nassar H, Yousefzadeh B, Fleury R, Ruzzene M, Alu A, Daraio C, Norris A N, Huang G L and Haberman M R 2020 Nat. Rev. Mater. 5 667
[55] Fang X, Wen J H, Cheng L and Li B W 2021 Phys. Rev. Appl. 15 054022
[57] Haldane F D 1988 Phys. Rev. Lett. 61 2015
[58] Liu Y Z, Chen X B and Xu Y 2020 Adv. Funct. Mater. 30 1904784
[59] Pekola J P and Karimi B 2021 Rev. Mod. Phys. 93 041001
[60] Zhang L F, Yan Y H, Wu C Q, Wang J S and Li B W 2009 Phys. Rev. B 80 172301
[61] Werlang T and Valente D 2015 Phys. Rev. E 91 012143
[62] Scheibner R, Konig M, Reuter D, Wieck A D, Gould C, Buhmann H and Molenkamp L W 2008 New J. Phys. 10 083016
[63] Gotsmann B, Gemma 2A and Segal D 2022 Appl. Phys. Lett. 120 160503
[56] Ordonez-Miranda J, Ezzahri Y and Joulain K 2017 Phys. Rev. E 95 022128
[64] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[65] Yang N, Zhang G and Li B W 2010 Nano Today 5 85
[66] Ye Z Q and Cao B Y 2017 Nanoscale 9 11480
[68] Aiyiti A, Zhang Z W, Chen B S, Hu S Q, Chen J, Xu X F and Li B W 2018 Carbon 140 673
[67] Liu B, Chen Y and Xu X 2021 Nanoscale 13 13641
[69] Li T, Jiang W T, Zhang Y, Li B T, Wang L L, Niu D, Liu H Z, Yin L, Shi Y S, Chen B D, Chen J J, Liu X K and Peng D L 2022 Adv. Funct. Mater. 32 2111229
[70] Lyu J, Sheng Z Z, Xu Y Y, Liu C M and Zhang X T 2022 Adv. Funct. Mater. 32 2200137
[71] Bardeen J and Brattain W H 1948 Phys. Rev. 74 230
[72] Ben-Abdallah P and Biehs S A 2014 Phys. Rev. Lett. 112 044301
[73] Song B, Fiorino A, Meyhofer E and Reddy P 2015 AIP Advances 5 053503
[74] Liang B, Kan W W, Zou X Y, Yin L L and Cheng J C 2014 Appl. Phys. Lett. 105 083510
[75] Chen X K, Xie Z X, Zhou W X, Tang L M and Chen K Q 2016 Carbon 100 492
[76] Fu W C, Jin T, He D H and Qu S X 2015 Physica A 433 211
[77] Chung Lo W, Wang L and Li B W 2008 J. Phys. Soc. Jpn. 77 054402
[78] Behnia S and Panahinia R 2018 Chem. Phys. 505 40
[79] Majland M, Christensen K S and Zinner N T 2020 Phys. Rev. B 101 184510
[80] Klinar K, Rojo M M, Kutnjak Z and Kitanovski A 2020 J. Appl. Phys. 127 234101
[81] Schmidt R R, Cruz E E and Iyengar M 2005 IBM Journal of Research and Development 49 709
[82] Zhao P, Lim Y D, Li H Y, Luca G and Tan C S 2021 IEEE Open Journal of Nanotechnology 2 101
[83] Song H, Liu J, Liu B, Wu J, Cheng H M and Kang F 2018 Joule 2 442
[84] Moore A L and Shi L 2014 Materials Today 17 163
[85] Franco V, Blázquez J S, Ipus J J, Law J Y, Moreno-Ramírez L M and Conde A 2018 Progress in Materials Science 93 112
[86] Ožbolt M, Kitanovski A, Tušek J and Poredoš A 2014 International Journal of Refrigeration 40 174
[87] Qian S, Geng Y, Wang Y, Ling J, Hwang Y, Radermacher R, Takeuchi I and Cui J 2016 International Journal of Refrigeration 64 1
[88] Shannon C E 1938 Electrical Engineering 57 713
[89] Waldrop M M 2016 Nature 530 144
[90] Wehmeyer G, Yabuki T, Monachon C, Wu J Q and Dames C 2017 Appl. Phys. Rev. 4 041304
[91] Pugsley A, Zacharopoulos A, Mondol J D and Smyth M 2019 Int. J. Heat Mass Transf. 144 118660
[92] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
[93] Wang Z, Xie R, Bui C T, Liu D, Ni X, Li B W and Thong J T 2011 Nano Lett 11 113
[94] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B W and Ozyilmaz B 2014 Nat. Commun. 5 3689
[95] Hartland G V 2011 Chem. Rev. 111 3858
[96] Sun B and Koh Y K 2016 Rev. Sci. Instrum. 87 064901
[97] Chen J, Xu X F, Zhou J and Li B W 2022 Rev. Mod. Phys. 94 025002
[98] Shen X Y and Huang J P 2014 Int. J. Heat Mass Transf. 78 1
[99] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
[100] Li N B, Zhan F, Hänggi P and Li B W 2009 Phys. Rev. E 80 011125
[101] Zhao H and Nie L 2020 Euro. Phys. J. B 93 206
[102] Song H, Liu J, Liu B, Wu J, Cheng H M and Kang F 2018 Joule 2 442
[1] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[2] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
[3] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[4] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[5] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[6] Nonequilibrium reservoir engineering of a biased coherent conductor for hybrid energy transport in nanojunctions
"Bing-Zhong Hu(胡柄中), Lei-Lei Nian(年磊磊), and Jing-Tao Lü(吕京涛). Chin. Phys. B, 2020, 29(12): 120505.
[7] Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system
Jian-Yong Yang(杨建勇) and Hua-Jun Chen(陈华俊)†. Chin. Phys. B, 2020, 29(10): 107801.
[8] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[9] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[10] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[11] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[12] Polarization resolved analysis of phonon transport in a multi-terminal system
Yun-Feng Gu(顾云风), Liu-Tong Zhu(朱留通), Xiao-Li Wu(吴晓莉). Chin. Phys. B, 2019, 28(12): 124401.
[13] Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms
Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2019, 28(8): 086501.
[14] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[15] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
No Suggested Reading articles found!