CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel |
Peng-Lin Gao(高朋林)1,2, Jian Gong(龚建)2, Qiang Tian(田强)2, Gung-Ai Sun(孙光爱)2, Hai-Yang Yan(闫海洋)2, Liang Chen(陈良)2, Liang-Fei Bai(白亮飞)2, Zhi-Meng Guo(郭志猛)3, and Xin Ju(巨新)1,† |
1 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China; 2 Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; 3 Institute of Power Metallurgy, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract A 9Cr-oxide dispersion strengthened (ODS) steel was thermally aged at 873 K for up to 5000 h. The size distribution and chemical composition of the dispersed oxide nanoparticles were analyzed by small-angle neutron scattering under a magnetic field. Combined with transmission electron microscopy, Vickers micro-hardness tests and electron backscattered diffraction measurements, all the results showed that the thermal treatment had little or no effect on the size distributions and volume fractions of the oxide nanoparticles in the ferromagnetic matrix, which suggested excellent thermal stability of the 9Cr-ODS steel.
|
Received: 07 July 2021
Revised: 13 December 2021
Accepted manuscript online:
|
PACS:
|
61.05.fg
|
(Neutron scattering (including small-angle scattering))
|
|
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
68.60.Dv
|
(Thermal stability; thermal effects)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2017YFB0702400). |
Corresponding Authors:
Xin Ju,E-mail:jux@ustb.edu.cn
E-mail: jux@ustb.edu.cn
|
About author: 2021-12-16 |
Cite this article:
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新) Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel 2022 Chin. Phys. B 31 056102
|
[1] Ohtsuka S, Ukai S, Fujiwara M, Kaito T and Narita T 2004 J. Nucl. Mater. 329-333 372 [2] Odette G R 2018 Scripta Mater. 143 142 [3] Certain A, Kuchibhatla S, Shutthanandan V, Hoelzer D T and Allen T R 2013 J. Nucl. Mater. 434 311 [4] Gao P, Ju X, Xin Y, Cao Q S, Guo Z M, Guo L P and Wang B Y 2016 IEEE. T. Plasma. Sci. 44 1631 [5] Li Y F, Zhang J R, Shan Y Y, Yan W, Shi Q Q, Yang K, Shen J J, Nagasaka T, Muroga T, Yang H L, Kano S and Abe H 2019 J. Nucl. Mater. 517 307 [6] Li B S, Yang Z, Xu S, Wei K F, Wang Z G, Shen T L, Zhang T M and Liao Q 2021 Chin. Phys. B 30 036102 [7] Li Y F, Nagasaka T, Muroga T, Kimura A and Ukai S 2011 Fusion Engin. Design 86 2495 [8] Klueh R L, Gelles D S, Jitsukawa S, Kimura A Odette G R, Schaaf B V D and Victoria M 2002 J. Nucl. Mater. 307-311 455 [9] Oksiuta Z, Kozikowski P, Lewandowska M, Ohnuma M, Suresh K and Kurzydlowski K J 2013 J. Mater. Sci. 48 4620 [10] Zhong S Y, Ribis J, Klosek V, Carlan Y D, Lochet N, Ji V and Mathon M H 2012 J. Nucl. Mater. 428 154 [11] Ribis J, Lescoat M L, Zhong S Y, Carlan Y D and Mathon M H 2013 J. Nucl. Mater. 442 S101 [12] Capdevila C, Miller M K and Russell K F 2008 J. Mater. Sci. 43 3889 [13] Capdevila C, Miller M K and Chao J 2012 Acta Mater. 60 4673 [14] Száraz Z, Török G, Kršjak V and Hähner P 2013 J. Nucl. Mater. 435 56 [15] Mathon M H, Carlan Y D, Geoffroy G, Averty X, Alaamo A and Novion C H 2003 J. Nucl. Mater. 312 236 [16] Leitner H, Staron P, Clemens H, Marsoner S and Warbichler P 2005 Mat. Sci. Eng. A 398 323 [17] Staron P, Jamnig B, Leitner H, Ebner R and Clemens H 2003 J. Appl. Crystallogr. 36 415 [18] Zhang Z W, Yao L, Wang X L and Miller M K 2015 Sci. Rep. 5 10600 [19] Mathon M H, Perrut M, Zhong S Y and Carlan Y D 2012 J. Nucl. Mater. 428 147 [20] Hu H L, Zhou Z J, Li M, Zhang L F, Wang M, Li S F and Ge C C 2012 Corros. Sci. 65 209 [21] Toloczko M B, Gelles D S, Garner F A Kurtz R J and Abe K 2004 J. Nucl. Mater. 329-333 352 [22] Rouffié A L, Crépin J, Sennour M, Tanguy B, Pineau A, Hamon D, Wident P, Vincent S, Garat V and Fournier B 2014 J. Nucl. Mater. 445 37 [23] Pareja R, Parente P, Muñoz A, Radulescu A and Castro V D 2015 Philos. Mag. 95 2450 [24] Keiderling K 2002 Appl. Phys. A 74 s1455 [25] Jackson A J 2008 Introduction to Small Angle Neutron Scattering and Neutron Reflectometry p. 5 [26] Kline R S 2006 J. Appl. Crystallogr. 39 895 [27] Guinier A, Fournet G, Walker C B and Vineyard G H 1956 Phys. Today 9 38 [28] Coppola R, Kampmann R, Magnani M and Staron P 1998 Acta Mater. 46 5447 [29] He P, Gao P L, Tian Q, Lv J M and Yao W Z 2017 Mater. Lett. 209 535 [30] Oono N, Nakamura K, Ukai S, Kaito T, Torimaru T, Kimura A and Hayashi S 2016 Nucl. Mater. Energy 9 342 [31] Ribis J and Carlan Y D 2012 Acta Mater. 60 238 [32] Ribis J, Thual M A, Guilbert T, Carlan Y D and Legris A 2017 J. Nucl. Mater. 484 183 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|