Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 126102    DOI: 10.1088/1674-1056/ac891e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy

Lin Lang(稂林)1, Huiqiu Deng(邓辉球)2,†, Jiayou Tao(陶家友)1, Tengfei Yang(杨腾飞)3, Yeping Lin(林也平)3, and Wangyu Hu(胡望宇)3
1 Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communications, School of Physics and Electrical Sciences, Hunan Institute of Science and Technology, Yueyang 414006, China;
2 School of Physics and Electronics, Hunan University, Changsha 410082, China;
3 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Abstract  High-entropy alloys (HEAs) and medium-entropy alloys (MEAs) have attracted a great deal of attention for developing nuclear materials because of their excellent irradiation tolerance. Herein, formation and evolution of radiation-induced defects in NiCoFe MEA and pure Ni are investigated and compared using molecular dynamics simulation. It is observed that the defect recombination rate of ternary NiCoFe MEA is higher than that of pure Ni, which is mainly because, in the process of cascade collision, the energy dissipated through atom displacement decreases with increasing the chemical disorder. Consequently, the heat peak phase lasts longer, and the recombination time of the radiation defects (interstitial atoms and vacancies) is likewise longer, with fewer deleterious defects. Moreover, by studying the formation and evolution of dislocation loops in Ni-Co-Fe alloys and Ni, it is found that the stacking fault energy in Ni-Co-Fe decreases as the elemental composition increases, facilitating the formation of ideal stacking fault tetrahedron structures. Hence, these findings shed new light on studying the formation and evolution of radiation-induced defects in MEAs.
Keywords:  medium-entropy alloy      molecular dynamics simulations      radiation-induced defects      stacking fault energy  
Received:  14 June 2022      Revised:  08 August 2022      Accepted manuscript online:  12 August 2022
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.-d (Radiation effects on specific materials)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant No. 11775074) and the Science and Technology Program of Hunan Province, China (Grant No. 2019TP1014). The authors also thank the National Supercomputer Center in Changsha for the computational resource provided.
Corresponding Authors:  Huiqiu Deng     E-mail:  hqdeng@hnu.edu.cn

Cite this article: 

Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇) Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy 2022 Chin. Phys. B 31 126102

[1] Davis J R 1990 ASM Speciality Handbook: Nickel, Cobalt, and Their Alloys, 2nd edn. (New York: ASM International)
[2] Granberg F, Nordlund K, Ullah M W, Jin K, Lu C, Bei H, Wang L M, Djurabekova F, Weber W J and Zhang Y 2016 Phys. Rev. Lett. 116 135504
[3] Lu C, Niu L, Chen N, Jin K, Yang T, Xiu P, Zhang Y, Gao F, Bei H, Shi S, He M R, Robertson I M, Weber W J and Wang L 2016 Nat. Commun. 7 13564
[4] Cantor B, Chang I T H, Knight P and Vincent A J B 2004 Mater. Sci. Eng. A 375 213
[5] Otto F, Yang Y, Bei H and George E P 2013 Acta Mater. 61 2628
[6] Senkov O N, Miller J D, Miracle D B and Woodward C 2015 Nat. Commun. 6 6529
[7] Jin K and Bei H 2018 Front. Mater. 5 26
[8] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P and Ritchie R O 2014 Science 345 1153
[9] Miracle D B and Senkov O N 2017 Acta Mater. 122 448
[10] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H and Chang S Y 2004 Adv. Eng. Mater. 6 299
[11] Zhang Y, Yang X and Liaw P K 2012 JOM 64 830
[12] Senkov O N, Scott J M, Senkova S V, Miracle D B and Woodward C F 2011 J. Alloys Compd. 509 6043
[13] Antonaglia J, Xie X, Tang Z, Tsai C W, Qiao J W, Zhang Y, Laktionova M O, Tabachnikova E D, Yeh J W, Senkov O N, Gao M C, Uhl J T, Liaw P K and Dahmen K A 2014 JOM 66 2002
[14] Chuang M H, Tsai M H, Wang W R, Lin S J and Yeh J W 2011 Acta Mater. 59 6308
[15] Tang Z, Huang L, He W and Liaw P 2014 Entropy 16 895
[16] Lee C P, Chen Y Y, Hsu C Y, Yeh J W and Shih H C 2008 Thin Solid Films 517 1301
[17] Santodonato L J, Zhang Y, Feygenson M, Parish C M, Gao M C, Weber R J, Neuefeind J C, Tang Z and Liaw P K 2015 Nat. Commun. 6 5964
[18] Li Z, Pradeep K G, Deng Y, Raabe D and Tasan C C 2016 Nature 534 227
[19] Zhang Y, Stocks G M, Jin K, Lu C, Bei H, Sales B C, Wang L, Beland L K, Stoller R E, Samolyuk G D, Caro M, Caro A and Weber W J 2015 Nat. Commun. 6 8736
[20] Lu C, Jin K, Beland L K, Zhang F, Yang T, Qiao L, Zhang Y, Bei H, Christen H M, Stoller R E and Wang L 2016 Sci. Rep. 6 19994
[21] Jin K, Lu C, Wang L M, Qu J, Weber W J, Zhang Y and Bei H 2016 Scr. Mater. 119 65
[22] Kumar N A P K, Li C, Leonard K J, Bei H and Zinkle S J 2016 Acta Mater. 113 230
[23] Lu C, Yang T N, Jin K, Velisa G, Xiu P, Peng Q, Gao F, Zhang Y, Bei H, Weber W J and Wang L 2019 J. Nucl. Mater. 524 60
[24] Lu C, Yang T, Jin K, Velisa G, Xiu P, Song M, Peng Q, Gao F, Zhang Y, Bei H, Weber W J and Wang L 2018 Mater. Res. Lett. 6 584
[25] Lu C, Yang T, Jin K, Gao N, Xiu P, Zhang Y, Gao F, Bei H, Weber W J, Sun K, Dong Y and Wang L 2017 Acta Mater. 127 98
[26] Aidhy D S, Lu C, Jin K, Bei H, Zhang Y, Wang L and Weber W J 2015 Acta Mater. 99 69
[27] Jin K, Bei H and Zhang Y 2016 J. Nucl. Mater. 471 193
[28] Shan C, Lang L, Yang T, Lin Y, Gao F, Deng H and Hu W 2020 Comput. Mater. Sci. 177 109555
[29] Ardell A J and Bellon P 2016 Curr. Opin. Solid State Mater. Sci. 20 115
[30] Plimpton S 1995 J. Comput. Phys. 117 1
[31] Lee B J and Baskes M I 2000 Phys. Rev. B 62 8564
[32] Choi W M, Jo Y H, Sohn S S, Lee S and Lee B J 2018 npj Comput. Mater. 4 1
[33] Do H S and Lee B J 2018 Sci. Rep. 8 16015
[34] Fang Q, Chen Y, Li J, Jiang C, Liu B, Liu Y and Liaw P K 2019 Int. J. Plast. 114 161
[35] Biersack J P and Ziegler J F 1982 Nucl. Instrum. Methods Phys. Res. 194 93
[36] Liu X, Pei Z and Eisenbach M 2019 Mater. Des. 180 107955
[37] Stukowski A, Bulatov V V and Arsenlis A 2012 Modell. Simul. Mater. Sci. Eng. 20 085007
[38] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[39] Sigle W and Seeger A 1994 Phys. Status Solidi A 146 57
[40] Urban K and Yoshida N 2006 Philos. Mag. A 44 1193
[41] Tsai K Y, Tsai M H and Yeh J W 2013 Acta Mater. 61 4887
[42] Zhang R, Zhao S, Ding J, Chong Y, Jia T, Ophus C, Asta M, Ritchie R O and Minor A M 2020 Nature 581 283
[43] Lang L, Deng H Q, Tian Z, Gao F, Hu W Y, Wen D D and Mo Y F 2019 J. Alloys Compd. 775 1184
[44] Lu C, Yang T, Niu L, Peng Q, Jin K, Crespillo M L, Velisa G, Xue H, Zhang F, Xiu P, Zhang Y, Gao F, Bei H, Weber W J and Wang L 2018 J. Nucl. Mater. 509 237
[45] Arakawa K, Ono K, Isshiki M, Mimura K, Uchikoshi M and Mori H 2007 Science 318 956
[46] Matsukawa Y and Zinkle S J 2007 Science 318 959
[47] Foreman A J E, Phythian W J and English C A 1992 Philos. Mag. A 66 671
[48] Zhao P and Shimomura Y 1999 Comput. Mater. Sci. 14 84
[49] Levo E, Granberg F, Fridlund C, Nordlund K and Djurabekova F 2017 J. Nucl. Mater. 490 323
[50] Yi X, Jenkins M L, Kirk M A, Zhou Z and Roberts S G 2016 Acta Mater. 112 105
[51] Zhang J Y and Zhang W Z 2019 Modell. Simul. Mater. Sci. Eng. 27 035008
[52] Gao F and Bacon D J 1997 Philos. Mag. A 75 1603
[53] Nordlund K and Gao F 1999 Appl. Phys. Lett. 74 2720
[54] Diaz de la Rubia T and Guinan M W 1991 Phys. Rev. Lett. 66 2766
[55] Béland L K, Lu C, Osetskiy Y N, Samolyuk G D, Caro A, Wang L and Stoller R E 2016 J. Appl. Phys. 119 085901
[56] Carter C B and Holmes S M 2006 Philos. Mag. 35 1161
[57] Siegel D J 2005 Appl. Phys. Lett. 87 121901
[58] Zaddach A J, Niu C, Koch C C and Irving D L 2013 JOM 65 1780
[59] Zhao S, Stocks G M and Zhang Y 2017 Acta Mater. 134 334
[60] Liu S F, Wu Y, Wang H T, He J Y, Liu J B, Chen C X, Liu X J, Wang H and Lu Z P 2018 Intermetallics 93 269
  • 1. .mp4(3357KB)

  • 2. .mp4(4102KB)

  • 3. .mp4(2906KB)

  • 4. .mp4(4670KB)

[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[3] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[4] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[5] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[6] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[7] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[8] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[9] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[10] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[11] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[12] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[13] Ethylene glycol solution-induced DNA conformational transitions
Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(11): 113102.
[14] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[15] Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field
Hua-Dong Zeng(曾华东), Zhi-Yang Zhu(祝志阳), Ji-Dong Zhang(张吉东), Xin-Lu Cheng(程新路). Chin. Phys. B, 2017, 26(5): 056101.
No Suggested Reading articles found!