CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology |
Dong-Qing Li(李东青)1,2,3, Tian-Qi Liu(刘天奇)1,5, Pei-Xiong Zhao(赵培雄)1, Zhen-Yu Wu(吴振宇)4, Tie-Shan Wang(王铁山)3, and Jie Liu(刘杰)1,2,† |
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China; 4 National University of Defense Technology, Changsha 410000, China; 5 Tsinghua University, Beijing 100084, China |
|
|
Abstract Three-dimensional (3D) TCAD simulations demonstrate that reducing the distance between the well boundary and N-channel metal-oxide semiconductor (NMOS) transistor or P-channel metal-oxide semiconductor (PMOS) transistor can mitigate the cross section of single event upset (SEU) in 14-nm complementary metal-oxide semiconductor (CMOS) bulk FinFET technology. The competition of charge collection between well boundary and sensitive nodes, the enhanced restoring currents and the change of bipolar effect are responsible for the decrease of SEU cross section. Unlike dual-interlock cell (DICE) design, this approach is more effective under heavy ion irradiation of higher LET, in the presence of enough taps to ensure the rapid recovery of well potential. Besides, the feasibility of this method and its effectiveness with feature size scaling down are discussed.
|
Received: 27 September 2021
Revised: 15 November 2021
Accepted manuscript online:
|
PACS:
|
61.80.Az
|
(Theory and models of radiation effects)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.12035019,11690041,and 62004221). |
Corresponding Authors:
Jie Liu,E-mail:J.Liu@impcas.ac.cn
E-mail: J.Liu@impcas.ac.cn
|
About author: 2021-11-26 |
Cite this article:
Dong-Qing Li(李东青), Tian-Qi Liu(刘天奇), Pei-Xiong Zhao(赵培雄), Zhen-Yu Wu(吴振宇), Tie-Shan Wang(王铁山), and Jie Liu(刘杰) Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology 2022 Chin. Phys. B 31 056106
|
[1] Calin T, Nicolaidis M and Velazco R 1996 IEEE Trans. Nucl. Sci. 43 2874 [2] Amusan O A, Witulski A F, Massengill L W, Bhuva B L, Fleming P R, Alles M L, Sternberg A L, Black J D and Schrimpf R D 2006 IEEE Trans. Nucl. Sci. 53 3253 [3] Giot D, Roche P, Gasiot G and Harboe-Sorensen R 2007 IEEE Trans. Nucl. Sci. 54 904 [4] Giot D, Roche P, Gasiot G, Autran J L and Harboe-Sørensen R 2008 IEEE Trans. Nucl. Sci. 55 2048 [5] Gorbunov M S, Dolotov P S, Antonov A A, Zebrev G I, Emeliyanov V V, Boruzdina A B, Petrov A G and Ulanova A V 2014 IEEE Trans. Nucl. Sci. 61 1575 [6] Luo Y H, Zhang F Q, Guo H X and Hajdas W 2020 Acta Phys. Sin. 69 018501 (in Chinese) [7] Loveless T D, Jagannathan S, Reece T, Chetia J, Bhuva B L, McCurdy M W, Massengill L W, Wen S J, Wong R and Rennie D 2011 IEEE Trans. Nucl. Sci. 53 1008 [8] Gorbunov M S, Boruzdina A B and Dolotov P S 2016 IEEE Trans. Nucl. Sci. 63 2250 [9] Luo Y H, Chen W, Zhang F Q and Wang T 2021 Chin. Phys. B 30 048502 [10] Amusan O A, Massengill L W, Baze M P, Bhuva B L, Witulski A F, Black J D, Balasubramanian A, Casey M C, Black D A, Ahlbin J R and Reed R A 2009 IEEE Trans. Dev. Mater. Rel. 9 311 [11] Raine M, Gaillardin M, Lagutere T, Duhamel O and Paillet P 2018 IEEE Trans. Nucl. Sci. 65 339 [12] Chen J J, Chen S M, He B Y, Chi Y Q, Qin J R, Liang B and Liu B W 2012 IEEE Trans. Nucl. Sci. 59 2859 [13] Narasimham B, Bhuva B L, Schrimpf R D, Massengill L W, Gadlage M J and Holman W T 2008 IEEE Trans. Nucl. Sci. 55 1708 [14] Chen J J, Chi Y Q and Liang B 2015 Chin. Phys. B 24 016012 [15] Wu Z Y and Chen S M 2018 IEEE Trans. Nucl. Sci. 65 418 [16] Ramamurthy C, Chellappa S, Vashishtha V, Gogulamudi A and Clark L T 2015 IEEE Trans. Nucl. Sci. 62 3040 [17] Atkinson N M, Witulski A F, Holman W T, Ahlbin J R, Bhuva B L and Massengill L W 2011 IEEE Trans. Nucl. Sci. 58 885 [18] Karp J, Hart M J, Maillard P, Hellings G and Linten D 2018 IEEE Trans. Nucl. Sci 65 217 [19] Amusan O A, Massengill L W, Bhuva B L, Dasgupta S, Witulski A F and Ahlbin J R 2007 IEEE Trans. Nucl. Sci. 54 2060 [20] Raine M, Valentin A, Gaillardin M and Paillet P 2012 IEEE Trans. Nucl. Sci. 59 840 [21] Raine M, Gaillardin M, Paillet P and Duhamel O 2014 IEEE Trans. Nucl. Sci. 61 1791 [22] Akkerman A, Barak J and Emfietzoglou D 2005 Nucl. Instrum. Method Phys. Res. B 227 319 [23] Raine M, Hubert G, Gaillardin M, Artola L, Paillet P, Girard S, Sauvestre J E and Bournel A 2011 IEEE Trans. Nucl. Sci. 58 840 [24] http://ptm.asu.edu [25] Synopsys 2013 Three-dimensional Simulation of 14/16 nm FinFETs with Round Fin Corners and Tapered Fin Shape [26] Yu J T, Chen S M, Chen J J and Huang P C 2016 16th European Conference on Radiation and Its Effects on Components and Systems, 2016 Bremen, Germany, pp. 1-4 [27] Wu Y C and Jhan Y R 2018 3D TCAD Simulation for CMOS Nanoeletronic Devices (Taiwan: Springer) pp. 185-195 [28] Nsengiyumva P, Massengill L W, Alles M L, Ball D R, Kauppila J S, Schrimpf R D, Reed R A, Bhuva B L and Holman W T 2017 42nd Government Microcircuit Appl. Critical Technol March, 2017 [29] Nsengiyumva P, Massengill L W, Alles M L, Bhuva B L, Ball D R, Kauppila J S, Haeffner T D, Holman W T and Reed R A 2017 IEEE Trans. Nucl. Sci. 59 2666 [30] Harrington R C, Kauppila J S, Maharrey J A, Haeffner T D, Sternberg A L, Zhang E X, Ball D R, Nsengiyumva P, Bhuva B L and Massengill L W 2019 IEEE Trans. Nucl. Sci. 66 1427 [31] Horiguchi N, Demuynck S, Ercken M, et al. 2010 Proceedings of the IEEE Symposium on Vlsi Technology, pp. 23-24 [32] Gadlage M J, Ahlbin J R, Narasimham B, Bhuva B L, Massengill L W and Schrimpf R D 2011 IEEE Trans. Dev. Mat. Rel. 11 179 [33] Jagannathan S, Gadlage M J, Bhuva B L, Schrimpf R D, Narasimham B and Chetia J 2010 IEEE Trans. Nucl. Sci. 57 3386 [34] Dai C T, Chen S H, Linten D, Scholz M, Hellings G, Boschke R, Karp J, Hart M, Groeseneken G, Ker M D, Mocuta A and Horiguchi N 2017 IEEE International Reliability Physics Symposium, 2-7 April, 2017, Monterey, CA, USA pp. EL-1.1-EL-1.3 [35] https://www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark-bohr-2014-idf-presentation.pdf |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|