ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture |
Lei Chen(陈磊)1,3, Pan Li(李磐)2,3,†, He-Shan Liu(刘河山)2,3, Jin Yu(余锦)1,3, Chang-Jun Ke(柯常军)1,3, and Zi-Ren Luo(罗子人)2,3,‡ |
1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; 2 National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We extend two adaptive step-size methods for solving two-dimensional or multi-dimensional generalized nonlinear Schrödinger equation (GNLSE): one is the conservation quantity error adaptive step-control method (RK4IP-CQE), and the other is the local error adaptive step-control method (RK4IP-LEM). The methods are developed in the vector form of fourth-order Runge-Kutta iterative scheme in the interaction picture by converting a vector equation in frequency domain. By simulating the supercontinuum generated from the high birefringence photonic crystal fiber, the calculation accuracies and the efficiencies of the two adaptive step-size methods are discussed. The simulation results show that the two methods have the same global average error, while RK4IP-LEM spends more time than RK4IP-CQE. The decrease of huge calculation time is due to the differences in the convergences of the relative photon number error and the approximated local error between these two adaptive step-size algorithms.
|
Received: 23 March 2022
Revised: 26 May 2022
Accepted manuscript online: 08 June 2022
|
PACS:
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFC2201803 and 2020YFC2200104). |
Corresponding Authors:
Pan Li, Zi-Ren Luo
E-mail: lipan@imech.ac.cn;luoziren@imech.ac.cn
|
Cite this article:
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人) Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture 2023 Chin. Phys. B 32 024213
|
[1] Dudley J M and Taylor J R 2010 Supercontinuum Generation in Optical Fibers (Cambridge: Cambridge University Press) [2] Agrawal G P 2007 Nonlinear Fiber Optics, 4th edn. (San Diego, CA: Academic) [3] Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler w, Apolonski A, Wadsworth W J, Knight J C, Russell P S J, Vetterlein M and Scherzer E 2002 Opt. Lett. 27 1800 [4] Paulsen H N, Hilligse K M, Thogersen J, Keiding S R and Larsen J J 2003 Opt. Lett. 28 1123 [5] Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135 [6] Zakharov V E and Shabat A B 1972 Sov. Phys. JETP. 34 62 [7] Fermann M E, Kruglov V I, Thomsen B C, Dudley J M and Harvey J D 2000 Phys. Rev. Lett. 84 6010 [8] Hohage T and Schmidt F 2002 Tech. Rep. ZIB-Report 2 [9] Reeves W H, Skyabin D V, Biancalana F, Knight J C, Omenetto F G, Efimov A and Taylor A J 2003 Nature 424 511 [10] Hillingsoe K M, Paulsen H N, Thogersen J, Keiding S R and Larsen J J 2003 J. Opt. Soc. Am. B. 20 1887 [11] Siederdissen T H Z, Nielsen N C, Kuhl J and Giessen H 2006 J. Opt. Soc. Am. B. 23 1360 [12] Cristiani I, Tediosi R, Tartara L and Degiorgio V 2004 Opt. Express. 12 124 [13] Ming L X and Byoungho L 2004 Jpn. J. Appl. Phys. 43 2492 [14] Blow K and Wood D 1989 IEEEJ. Quantum Electron. 25 2665 [15] Hult J 2008 J. Lightwave Technol. 25 3770 [16] Heidt A M 2009 J. Lightwave Technol. 27 3984 [17] Sinkin O V, Holzlöhner R, Zweck J and Menyuk C R 2003 J. Lightwave Technol. 21 61 [18] Rieznik A A, Heidt A M, König P G, Bettachini V A and Grosz D F 2012 IEEE. Photon. 4 552 [19] Torre A D, Sinobad M, Armand R, Davies B L, Madden P M S, Mitchell A, Moss D J, Hartmann J M, Reboud V, Fedeli J M, Monat C and Grillet C 2021 APL Photon. 6 016102 [20] Scheibinger R, Lüpken N M, Chemnitz M, Schaarschmidt K, Kobelke J, Fallnich C and Schmidt M 2021 Sci. Rep. 11 5270 [21] Saini T S, Tuan T H, Suzuki T and Ohishi Y 2020 Sci. Rep. 10 2236 [22] Zitelli M, Mangini F, Ferraro M, Niang A, Kharenko D and Wabnitz S 2020 Opt. Express 28 20473 [23] Eftekhar M A, Sanjabi-Eznaveh Z, Lopez-Aviles H E, Benis S, Antonio-Lopez J E, Kolesik M, Wise F, Amezcua-Correa R and Christodoulides D N 2019 Nat. Commun. 10 1638 [24] Niang A, Mansuryan T, Krupa K, Tonello A, Fabert M, Leproux P and Wabnitz S 2019 Opt. Express 27 24018 [25] Teǧin U and Ortaç B 2018 Sci. Rep. 8 12470 [26] Yuan J H, Kang Z, Li F, Zhang X T, Mei C, Zhou G Y, Sang X Z, Wu Q, Yan B B, Zhou X, Zhong K P, Wang K, Yu C X, Farrell G, Lu C, Tam H Y and Wai P K A 2017 Opt. Lett. 42 3537 [27] Wright L G, Christodoulides D N and Wise F W 2015 Nat. Photon. 9 306 [28] Wright L G, Ziegler Z M, Lushnikov P M, Zhu Z M, Eftekhar M A, Christodoulides D N and Wise F W 2017 IEEE. Trans. Industr. Inform. 24 1 [29] Dupiol R, Bendahmane A, Krupa K, Fatome J, Tonello A, Fabert M, Couderc V, Wabnitz S and Millot G 2017 Opt. Lett. 42 3419 [30] Lu F, Lin Q, Knox W H and Agrawal G P 2004 Phys. Rev. Lett. 93 183901 [31] Tu H, Liu Y, Liu X, Turchinovich D, Logsgaard J and Boppart S A 2012 Opt. Express 20 1113 [32] Nishizawa N, Ukai Y and Goto T 2005 Opt. Express 13 8128 [33] Aleksandr A V, Il'ya V F, Jens K, Matthias J, Kay S, Andrei B F, Hartmut B and Aleksei M Z 2012 Opt. Lett. 37 5163 [34] Shavrin I, Novotny S and Ludvigsen H 2013 Opt. Express 21 32141 [35] Khakimov R, Shavrin I, Novotny S, Kaivola M and Ludvigsen H 2013 Opt. Express 21 14388 [36] Li P, Shi L and Mao Q H 2013 Acta Phys. Sin. 62 154205 (in Chinese) [37] Brehler M, Schirwon M, Göddeke D and Krummrich P M 2017 J. Lightw. Technol. 35 3622 [38] Trillo S and Wabnitz S 1992 J. Opt. Soc. Am. B 9 1061 [39] Martins E R, Spadoti D H, Romero M A and Borges B H V 2007 Opt. Express 15 14335 [40] Ghosh A, Meneghetti M, Petersen C, Bang O, Brilland L, Venck S, Troles J, Dudley J and Sylvestre T 2019 J Phys: Photonics 1 044003 [41] Lin Q and Agrawal G P 2006 Opt. Lett. 31 3086 [42] Menyuk C R, Islam M N and Gordon J P 1991 Opt. Lett. 16 566 [43] Chick B J and Chon J W and Gu M 2008 Opt. Express 16 20099 [44] Lægsgaard J 2007 Opt. Express 15 16110 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|