Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 024215    DOI: 10.1088/1674-1056/ac7cd0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of elliptical airy vortex beams based on all-dielectric metasurface

Xiao-Ju Xue(薛晓菊)1, Bi-Jun Xu(徐弼军)1,3,†, Bai-Rui Wu(吴白瑞)1, Xiao-Gang Wang(汪小刚)1, Xin-Ning Yu(俞昕宁)1, Lu Lin(林露)1, and Hong-Qiang Li(李宏强)2,3
1 School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China;
2 Tongji University, Shanghai 200092, China;
3 Institute of Dongguan-Tongji University, Dongguan 523808, China
Abstract  Elliptical airy vortex beams (EAVBs) can spontaneously form easily identifiable topological charge focal spots. They are used for topological charge detection of vortex beams because they have the abruptly autofocusing properties of circular airy vortex beams and exhibit unique propagation characteristics. We study the use of the dynamic phase and Pancharatnam-Berry phase principles for generation and modulation of EAVBs by designing complex-amplitude metasurface and phase-only metasurface, at an operating wavelength of 1500 nm. It is found that the focusing pattern of EAVBs in the autofocusing plane splits into |m| +1 tilted bright spots from the original ring, and the tilted direction is related to the sign of the topological charge number m. Due to the advantages of ultra-thin, ultra-light, and small size of the metasurface, our designed metasurface device has potential applications in improving the channel capacity based on orbital angular momentum communication, information coding, and particle capture compared to spatial light modulation systems that generate EAVBs.
Keywords:  elliptical airy vortex beams (EAVBs)      metasurface      topological charge  
Received:  01 April 2022      Revised:  02 June 2022      Accepted manuscript online:  29 June 2022
PACS:  42.70.-a (Optical materials)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.68.+m (Optical properties of surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61975185), and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY19F030004 and LY20F050002).
Corresponding Authors:  Bi-Jun Xu     E-mail:  xubijun@zust.edu.cn

Cite this article: 

Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强) Generation of elliptical airy vortex beams based on all-dielectric metasurface 2023 Chin. Phys. B 32 024215

[1] Berry M V and Balazs N L 1979 Am. J. Phys. 47 264
[2] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2007 Phys. Rev. Lett. 99 213901
[3] Li Z, Cheng H, Liu Z, Chen S and Tian J 2016 Adv. Opt. Mater. 4 1230
[4] Hao W, Deng M, Chen S and Chen L 2019 Phys. Rev. Appl. 11 054012
[5] Wen J, Chen L, Yu B, Nieder J B, Zhuang S, Zhang D and Lei D 2021 ACS Nano 15 1030
[6] Wu B, Xu B, Wang X and Ying H 2021 Opt. Mater. Express 11 842
[7] Efremidis N K and Christodoulides D N 2010 Opt. Lett. 35 4045
[8] Papazoglou D G, Efremidis N K, Christodoulides D N and Tzortzakis S 2011 Opt. Lett. 36 1842
[9] Panagiotopoulos P, Papazoglou D G, Couairon A and Tzortzakis S 2013 Nat. Commun. 4 2622
[10] Manousidaki M, Papazoglou D G, Farsari M and Tzortzakis S 2016 Optica 3 525
[11] Jiang Y, Yu W, Zhu X and Jiang P 2018 Opt. Express 26 23084
[12] Li T, Cao B, Zhang X, Ma X, Huang K and Lu X 2019 J. Opt. Soc. Am. A 36 526
[13] Marrucci L, Manzo C and Paparo D 2006 Phys. Rev. Lett. 96 163905
[14] Coullet P, Gil L and Rocca F 1989 Opt. Commun. 73 403
[15] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488
[16] Kai C, Huang P, Shen F, Zhou H and Guo Z 2017 IEEE Photon. J. 9 7902510
[17] Wang Z, Zhang N and Yuan X C 2011 Opt. Express 19 482
[18] He H, Friese M E J, Heckenberg N R and Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826
[19] Ding L, Meng Z, Feng S, Nie S, Ma J and Yuan C 2020 IEEE Photon. Technol. Lett. 32 741
[20] Ruelas A, Lopez-Aguayo S and Gutiérrez-Vega J C 2018 J. Opt. 21 015602
[21] Nieminen T A, Stilgoe A B, Heckenberg N R and Rubinsztein-Dunlop H 2008 J. Opt. A: Pure Appl. Opt. 10 115005
[22] Chen M, Mazilu M, Arita Y, Wright E M and Dholakia K 2013 Opt. Lett. 38 4919
[23] Wang X, Yang Z and Zhao S 2019 Optik 176 49
[24] Datta A and Saha A 2020 Optik 218 165006
[25] Yu L and Zhang Y 2017 Opt. Express 25 22565
[26] Zha Y, Huang K, Liu B, Sun M, Hu H, Li N, Zhang X, Zhu B and Lu X 2018 Appl. Opt. 57 6717
[27] Xie W, Zhang P, Wang H and Chu X 2018 Opt. Commun. 427 288
[28] Cao B, Shen D, Qiu Z, Li T, Huang K, Zhang X and Lu X 2020 J. Opt. Soc. Am. A 37 1883
[29] Dwivedi R, Sharma P, Jaiswal V K and Mehrotra R 2021 Opt. Commun. 485 126710
[30] Zhang Y, Zeng X, Ma L, Zhang R, Zhan Z, Chen C, Ren X, He C, Liu C and Cheng C 2019 Adv. Opt. Mater. 7 1900372
[31] Yu N, Genevet P, Kats Mikhail A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[32] Chen L, Li H, Hao W, Yin X and Wang J 2020 Chin. Phys. B 29 084210
[33] Lin B Q, Lv L T, Guo J X, Wang Z L, Huang S Q and Wang Y W 2020 Chin. Phys. B 29 104205
[34] Wu J Y, Xu X F and Wei L F 2020 Chin. Phys. B 29 094202
[35] Zhang Z Y, Fan F, Li T F, Ji Y Y and Chang S J 2020 Chin. Phys. B 29 078707
[36] Zhou C and Li J S 2020 Chin. Phys. B 29 078706
[37] Nadell C C, Huang B, Malof J M and Padilla W J 2019 Opt. Express 27 27523
[38] Liu H, Guo C, Vampa G, Zhang J L, Sarmiento T, Xiao M, Bucksbaum P H, Vučković J, Fan S and Reis D A 2018 Nat. Phys. 14 1006
[39] Yang W, Xiao S, Song Q, Liu Y, Wu Y, Wang S, Yu J, Han J and Tsai D P 2020 Nat. Commun. 11 1864
[40] Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D and Capasso F 2015 Nano Lett. 15 5358
[41] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M and Faraon A 2018 Nat. Commun. 9 812
[42] Wan X, Xiang Jiang W, Feng Ma H and Jun Cui T 2014 Appl. Phys. Lett. 104 151601
[43] Wu B, Xu B, Li Z, Cheng P, Xue X, Sun Z, Wang J, Wang Y, Zhi Y, Lin L, Wang X and Hao Y 2021 Opt. Mater. Express 11 1383
[44] Sun Z C, Yan M Y and Xu B J 2020 Chin. Phys. B 29 104101
[45] Xu B, Wu C, Wei Z, Fan Y and Li H 2016 Opt. Mater. Express 6 3940
[46] Li L, Jun Cui T, Ji W, Liu S, Ding J, Wan X, Bo Li Y, Jiang M, Qiu C W and Zhang S 2017 Nat. Commun. 8 197
[47] Ni X, Kildishev A V and Shalaev V M 2013 Nat. Commun. 4 2807
[48] Wang X, Wang W, Wei H, Xu B and Dai C 2021 Opt. Lett. 46 5794
[49] Deng Z L, Jin M, Ye X, Wang S, Shi T, Deng J, Mao N, Cao Y, Guan B O, Alú A, Li G and Li X 2020 Adv. Funct. Mater. 30 1910610
[50] Jiang Q, Cao L, Huang L, He Z and Jin G 2020 Nanoscale 12 24162
[51] Lee G Y, Yoon G, Lee S Y, Yun H, Cho J, Lee K, Kim H, Rho J and Lee B 2018 Nanoscale 10 4237
[52] Overvig A C, Shrestha S, Malek S C, Lu M, Stein A, Zheng C and Yu N 2019 Light Sci. Appl. 8 92
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[8] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[14] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[15] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
No Suggested Reading articles found!