ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of elliptical airy vortex beams based on all-dielectric metasurface |
Xiao-Ju Xue(薛晓菊)1, Bi-Jun Xu(徐弼军)1,3,†, Bai-Rui Wu(吴白瑞)1, Xiao-Gang Wang(汪小刚)1, Xin-Ning Yu(俞昕宁)1, Lu Lin(林露)1, and Hong-Qiang Li(李宏强)2,3 |
1 School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China; 2 Tongji University, Shanghai 200092, China; 3 Institute of Dongguan-Tongji University, Dongguan 523808, China |
|
|
Abstract Elliptical airy vortex beams (EAVBs) can spontaneously form easily identifiable topological charge focal spots. They are used for topological charge detection of vortex beams because they have the abruptly autofocusing properties of circular airy vortex beams and exhibit unique propagation characteristics. We study the use of the dynamic phase and Pancharatnam-Berry phase principles for generation and modulation of EAVBs by designing complex-amplitude metasurface and phase-only metasurface, at an operating wavelength of 1500 nm. It is found that the focusing pattern of EAVBs in the autofocusing plane splits into |m| +1 tilted bright spots from the original ring, and the tilted direction is related to the sign of the topological charge number m. Due to the advantages of ultra-thin, ultra-light, and small size of the metasurface, our designed metasurface device has potential applications in improving the channel capacity based on orbital angular momentum communication, information coding, and particle capture compared to spatial light modulation systems that generate EAVBs.
|
Received: 01 April 2022
Revised: 02 June 2022
Accepted manuscript online: 29 June 2022
|
PACS:
|
42.70.-a
|
(Optical materials)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.68.+m
|
(Optical properties of surfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61975185), and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY19F030004 and LY20F050002). |
Corresponding Authors:
Bi-Jun Xu
E-mail: xubijun@zust.edu.cn
|
Cite this article:
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强) Generation of elliptical airy vortex beams based on all-dielectric metasurface 2023 Chin. Phys. B 32 024215
|
[1] Berry M V and Balazs N L 1979 Am. J. Phys. 47 264 [2] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2007 Phys. Rev. Lett. 99 213901 [3] Li Z, Cheng H, Liu Z, Chen S and Tian J 2016 Adv. Opt. Mater. 4 1230 [4] Hao W, Deng M, Chen S and Chen L 2019 Phys. Rev. Appl. 11 054012 [5] Wen J, Chen L, Yu B, Nieder J B, Zhuang S, Zhang D and Lei D 2021 ACS Nano 15 1030 [6] Wu B, Xu B, Wang X and Ying H 2021 Opt. Mater. Express 11 842 [7] Efremidis N K and Christodoulides D N 2010 Opt. Lett. 35 4045 [8] Papazoglou D G, Efremidis N K, Christodoulides D N and Tzortzakis S 2011 Opt. Lett. 36 1842 [9] Panagiotopoulos P, Papazoglou D G, Couairon A and Tzortzakis S 2013 Nat. Commun. 4 2622 [10] Manousidaki M, Papazoglou D G, Farsari M and Tzortzakis S 2016 Optica 3 525 [11] Jiang Y, Yu W, Zhu X and Jiang P 2018 Opt. Express 26 23084 [12] Li T, Cao B, Zhang X, Ma X, Huang K and Lu X 2019 J. Opt. Soc. Am. A 36 526 [13] Marrucci L, Manzo C and Paparo D 2006 Phys. Rev. Lett. 96 163905 [14] Coullet P, Gil L and Rocca F 1989 Opt. Commun. 73 403 [15] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488 [16] Kai C, Huang P, Shen F, Zhou H and Guo Z 2017 IEEE Photon. J. 9 7902510 [17] Wang Z, Zhang N and Yuan X C 2011 Opt. Express 19 482 [18] He H, Friese M E J, Heckenberg N R and Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826 [19] Ding L, Meng Z, Feng S, Nie S, Ma J and Yuan C 2020 IEEE Photon. Technol. Lett. 32 741 [20] Ruelas A, Lopez-Aguayo S and Gutiérrez-Vega J C 2018 J. Opt. 21 015602 [21] Nieminen T A, Stilgoe A B, Heckenberg N R and Rubinsztein-Dunlop H 2008 J. Opt. A: Pure Appl. Opt. 10 115005 [22] Chen M, Mazilu M, Arita Y, Wright E M and Dholakia K 2013 Opt. Lett. 38 4919 [23] Wang X, Yang Z and Zhao S 2019 Optik 176 49 [24] Datta A and Saha A 2020 Optik 218 165006 [25] Yu L and Zhang Y 2017 Opt. Express 25 22565 [26] Zha Y, Huang K, Liu B, Sun M, Hu H, Li N, Zhang X, Zhu B and Lu X 2018 Appl. Opt. 57 6717 [27] Xie W, Zhang P, Wang H and Chu X 2018 Opt. Commun. 427 288 [28] Cao B, Shen D, Qiu Z, Li T, Huang K, Zhang X and Lu X 2020 J. Opt. Soc. Am. A 37 1883 [29] Dwivedi R, Sharma P, Jaiswal V K and Mehrotra R 2021 Opt. Commun. 485 126710 [30] Zhang Y, Zeng X, Ma L, Zhang R, Zhan Z, Chen C, Ren X, He C, Liu C and Cheng C 2019 Adv. Opt. Mater. 7 1900372 [31] Yu N, Genevet P, Kats Mikhail A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333 [32] Chen L, Li H, Hao W, Yin X and Wang J 2020 Chin. Phys. B 29 084210 [33] Lin B Q, Lv L T, Guo J X, Wang Z L, Huang S Q and Wang Y W 2020 Chin. Phys. B 29 104205 [34] Wu J Y, Xu X F and Wei L F 2020 Chin. Phys. B 29 094202 [35] Zhang Z Y, Fan F, Li T F, Ji Y Y and Chang S J 2020 Chin. Phys. B 29 078707 [36] Zhou C and Li J S 2020 Chin. Phys. B 29 078706 [37] Nadell C C, Huang B, Malof J M and Padilla W J 2019 Opt. Express 27 27523 [38] Liu H, Guo C, Vampa G, Zhang J L, Sarmiento T, Xiao M, Bucksbaum P H, Vučković J, Fan S and Reis D A 2018 Nat. Phys. 14 1006 [39] Yang W, Xiao S, Song Q, Liu Y, Wu Y, Wang S, Yu J, Han J and Tsai D P 2020 Nat. Commun. 11 1864 [40] Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D and Capasso F 2015 Nano Lett. 15 5358 [41] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M and Faraon A 2018 Nat. Commun. 9 812 [42] Wan X, Xiang Jiang W, Feng Ma H and Jun Cui T 2014 Appl. Phys. Lett. 104 151601 [43] Wu B, Xu B, Li Z, Cheng P, Xue X, Sun Z, Wang J, Wang Y, Zhi Y, Lin L, Wang X and Hao Y 2021 Opt. Mater. Express 11 1383 [44] Sun Z C, Yan M Y and Xu B J 2020 Chin. Phys. B 29 104101 [45] Xu B, Wu C, Wei Z, Fan Y and Li H 2016 Opt. Mater. Express 6 3940 [46] Li L, Jun Cui T, Ji W, Liu S, Ding J, Wan X, Bo Li Y, Jiang M, Qiu C W and Zhang S 2017 Nat. Commun. 8 197 [47] Ni X, Kildishev A V and Shalaev V M 2013 Nat. Commun. 4 2807 [48] Wang X, Wang W, Wei H, Xu B and Dai C 2021 Opt. Lett. 46 5794 [49] Deng Z L, Jin M, Ye X, Wang S, Shi T, Deng J, Mao N, Cao Y, Guan B O, Alú A, Li G and Li X 2020 Adv. Funct. Mater. 30 1910610 [50] Jiang Q, Cao L, Huang L, He Z and Jin G 2020 Nanoscale 12 24162 [51] Lee G Y, Yoon G, Lee S Y, Yun H, Cho J, Lee K, Kim H, Rho J and Lee B 2018 Nanoscale 10 4237 [52] Overvig A C, Shrestha S, Malek S C, Lu M, Stein A, Zheng C and Yu N 2019 Light Sci. Appl. 8 92 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|