INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Graphene/SrTiO3 interface-based UV photodetectors with high responsivity |
Heng Yue(岳恒)1,†, Anqi Hu(胡安琪)1,†, Qiaoli Liu(刘巧莉)1, Huijun Tian(田慧军)1, Chengri Hu(胡成日)1, Xiansong Ren(任显松)1, Nianyu Chen(陈年域)1, Chen Ge(葛琛)2, Kuijuan Jin(金奎娟)2,\ccclink, and Xia Guo(郭霞)1,‡ |
1 State Key Laboratory for Information Photonics and Optical Communications, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Strontium titanate (SrTiO3), which is a crucial perovskite oxide with a direct energy band gap of 3.2 eV, holds great promise for ultraviolet (UV) photodetection. However, the response performance of the conventional SrTiO3-based photodetectors is limited by the large relative dielectric constant of the material, which reduces the internal electric field for electron-hole pair separation to form a current collected by electrodes. Recently, graphene/semiconductor hybrid photodetectors by van-der-Waals heteroepitaxy method demonstrate ultrahigh sensitivity, which is benefit from the interface junction architecture and then prolonged lifetime of photoexcited carriers. Here, a graphene/SrTiO3 interface-based photodetector is demonstrated with an ultrahigh responsivity of 1.2× 106 A/W at the wavelength of 325 nm and ∼ 2.4× 104 A/W at 261 nm. The corresponding response time is in the order of ∼ ms. Compared with graphene/GaN interface junction-based hybrid photodetectors, ∼ 2 orders of magnitude improvement of the ultrahigh responsivity originates from a gain mechanism which correlates with the large work function difference induced long photo-carrier lifetime as well as the low background carrier density. The performance of high responsivity and fast response speed facilitates SrTiO3 material for further efforts seeking practical applications.
|
Received: 15 November 2020
Revised: 25 December 2020
Accepted manuscript online: 11 January 2021
|
PACS:
|
85.30.Hi
|
(Surface barrier, boundary, and point contact devices)
|
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFF0104801 and 2018YFB0406601) and the National Natural Science Foundation of China (Grant Nos. 61804012 and 11721404). |
Corresponding Authors:
†These authors contributed equally. ‡Corresponding author. E-mail: guox@bupt.edu.cn $^\S$Corresponding author. E-mail: kjjin@iphy.ac.cn
|
Cite this article:
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞) Graphene/SrTiO3 interface-based UV photodetectors with high responsivity 2021 Chin. Phys. B 30 038502
|
1 Xia F N, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839 2 Lin F, Chen S W, Meng J, Tse G, Fu X W, Xu F J, Shen B, Liao Z M and Yu D P 2014 Appl. Phys. Lett. 105 073103 3 Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725 4 Huang M Q, Wang M L, Chen C, Ma Z W, Li X F, Han J B and Wu Y Q 2016 Adv. Mater. 28 3481 5 Chen Z F, Li X M, Wang J Q, Tao L, Long M Z, Liang S J, Ang L K, Shu C, Tsang H K and Xu J B 2017 ACS Nano 11 430 6 Liu F Z and Kar S 2014 ACS Nano 8 10270 7 Chen Z F, Cheng Z Z, Wang J Q, Wan X, Shu C, Tsang H K, Ho H P and Xu J B 2015 Adv. Opt. Mater. 3 1207 8 Lu Y H, Wu Z Q, Xu W L and Lin S S 2016 Nanotechnology 27 48LT03 9 Zhang H, Babichev A V, Jacopin G, Lavenus P, Julien F H, Egorov A Y, Zhang J, Pauport\'e T and Tchernycheva M 2013 J. Appl. Phys. 114 234505 10 Boruah B D, Ferry D B, Mukherjee A and Misra A 2015 Nanotechnology 26 235703 11 Nie B, Hu J G, Luo L B, Xie C, Zeng L H, Lv P, Li F Z, Jie J S, Feng M, Wu C Y, Yu Y Q and Yu S H 2013 Small 9 2872 12 Tian H J, Liu Q L, Zhou C X, Zhan X J, He X Y, Hu A Q and Guo X 2018 Appl. Phys. Lett. 113 121109 13 Tian H J, Hu A Q, Liu Q L, He X Y and Guo X 2020 Adv. Opt. Mater. 8 1901741 14 Liu Q L, Tian H J, Li J, Hu A Q, He X Y, Sui M L and Guo X 2019 Adv. Opt. Mater. 7 1900455 15 Konstantatos G, Badioli M, Gaudrea L, Osmond J, Bernechea M, Arquer F P G, Gatti F and Koppens F H L 2011 Nat. Nanotechnol. 7 363 16 Adinolfi V and Sargent E H 2017 Nature 542 324 17 Kufer D, Nikitskiy I, Lasanta T and Navickaite G 2015 Adv. Mater. 27 176 18 Wang L, Jin K J, Xing J, Ge C, Lu H B, Zhou W J and Yang G Z 2013 Appl. Opt. 52 3473 19 Ohta H and Hosono H 2004 Mater. Today 7 42 20 Jiang H and Egawa T 2007 Appl. Phys. Lett. 90 7115 21 Tuta T, Yelboga T, Ulker E and Ozbay E 2008 Appl. Phys. Lett. 92 7433 22 Zhang Y, Shena S, Kim H J, Choi S, Ryou J, Dupuis R D and Narayan B 2009 Appl. Phys. Lett. 94 J165 23 Zhou W J, Jin K J, Guo H Z, Ge C, He M and Lu H B 2013 J. Appl. Phys. 4 1 24 Spitzer W G, Miller R C, Kleinman D A and Howarth L E 1962 Phys Rev 126 1710 25 Guo E J, Lu H B, He M, Xing J, Jin K J and Yang G Z 2010 Appl. Opt. 49 2557 26 Zhang M, Zhang H F, Lv K B, Chen W Y, Zhou J R, Shen L and Ruan S P 2012 Opt. Express 20 5936 27 Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401 28 Jing F Y, Zhang D Z, Li F, Zhou J R, Sun D M and Ruan S P 2015 J. Alloys Compd. 650 97 29 Gong X, Tong M H, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shie C L, Nilsson B and Heeger A J 2009 Science 325 1665 30 Sablon K A, Sergeev A, Najmaei S and Dubey M 2017 Nanophotonics 6 1263 31 Nikitskiy I, Goossens S, Kufer D, Lasanta T, Navickaite G, Koppens F H L and Konstantatos G 2016 Nat. Commun. 7 11954 32 Sun Z H, Liu Z K, Li J H, Tai G A, Lau S P and Yan F 2012 Adv. Mater. 24 5878 33 Ni Z Y, Ma L L, Du S C, Xu Y, Yuan M, Fang H H, Wang Z, Xu M S, Li D S, Yang J Y, Hu W D, Pi X D and Yang D R 2017 ACS Nano. 11 9854 34 Bessonov A A, Allen M, Liu Y, Malik S, Bottomley J, Rushton A, Medina-Salazar I, Voutilainen M, Kallioinen S, Colli A, Bower C, Andrew P and Ryh\"anen T 2017 ACS Nano 11 5547 35 Tian H J, Liu Q L, Hu A Q, He X Y, Hu Z H and Guo X 2018 Opt. Express 26 5408 36 An X H, Liu F Z, Jung Y J and Kar S 2013 Nano Letters 13 909 37 Wang W H, Du R X, Guo X T, Jiang J, Zhao W W, Ni Z H, Wang X R, You Y M and Ni Z H 2017 Light Sci. Appl. 6 e17113 38 Xu K, Xu C, Xie Y Y, Deng J, Zhu Y X, Guo W L, Xun M, Teo K B K, Chen H D and Sun J 2015 IEEE Trans. Electron Devices 62 2802 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|