Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 038502    DOI: 10.1088/1674-1056/abda2e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Graphene/SrTiO3 interface-based UV photodetectors with high responsivity

Heng Yue(岳恒)1,†, Anqi Hu(胡安琪)1,†, Qiaoli Liu(刘巧莉)1, Huijun Tian(田慧军)1, Chengri Hu(胡成日)1, Xiansong Ren(任显松)1, Nianyu Chen(陈年域)1, Chen Ge(葛琛)2, Kuijuan Jin(金奎娟)2,\ccclink, and Xia Guo(郭霞)1,
1 State Key Laboratory for Information Photonics and Optical Communications, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Strontium titanate (SrTiO3), which is a crucial perovskite oxide with a direct energy band gap of 3.2 eV, holds great promise for ultraviolet (UV) photodetection. However, the response performance of the conventional SrTiO3-based photodetectors is limited by the large relative dielectric constant of the material, which reduces the internal electric field for electron-hole pair separation to form a current collected by electrodes. Recently, graphene/semiconductor hybrid photodetectors by van-der-Waals heteroepitaxy method demonstrate ultrahigh sensitivity, which is benefit from the interface junction architecture and then prolonged lifetime of photoexcited carriers. Here, a graphene/SrTiO3 interface-based photodetector is demonstrated with an ultrahigh responsivity of 1.2× 106 A/W at the wavelength of 325 nm and ∼ 2.4× 104 A/W at 261 nm. The corresponding response time is in the order of ms. Compared with graphene/GaN interface junction-based hybrid photodetectors, ∼ 2 orders of magnitude improvement of the ultrahigh responsivity originates from a gain mechanism which correlates with the large work function difference induced long photo-carrier lifetime as well as the low background carrier density. The performance of high responsivity and fast response speed facilitates SrTiO3 material for further efforts seeking practical applications.
Keywords:  interface      SrTiO3      ultraviolet photodetector      high responsivity  
Received:  15 November 2020      Revised:  25 December 2020      Accepted manuscript online:  11 January 2021
PACS:  85.30.Hi (Surface barrier, boundary, and point contact devices)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFF0104801 and 2018YFB0406601) and the National Natural Science Foundation of China (Grant Nos. 61804012 and 11721404).
Corresponding Authors:  These authors contributed equally. Corresponding author. E-mail: guox@bupt.edu.cn $^\S$Corresponding author. E-mail: kjjin@iphy.ac.cn   

Cite this article: 

Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞) Graphene/SrTiO3 interface-based UV photodetectors with high responsivity 2021 Chin. Phys. B 30 038502

1 Xia F N, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
2 Lin F, Chen S W, Meng J, Tse G, Fu X W, Xu F J, Shen B, Liao Z M and Yu D P 2014 Appl. Phys. Lett. 105 073103
3 Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725
4 Huang M Q, Wang M L, Chen C, Ma Z W, Li X F, Han J B and Wu Y Q 2016 Adv. Mater. 28 3481
5 Chen Z F, Li X M, Wang J Q, Tao L, Long M Z, Liang S J, Ang L K, Shu C, Tsang H K and Xu J B 2017 ACS Nano 11 430
6 Liu F Z and Kar S 2014 ACS Nano 8 10270
7 Chen Z F, Cheng Z Z, Wang J Q, Wan X, Shu C, Tsang H K, Ho H P and Xu J B 2015 Adv. Opt. Mater. 3 1207
8 Lu Y H, Wu Z Q, Xu W L and Lin S S 2016 Nanotechnology 27 48LT03
9 Zhang H, Babichev A V, Jacopin G, Lavenus P, Julien F H, Egorov A Y, Zhang J, Pauport\'e T and Tchernycheva M 2013 J. Appl. Phys. 114 234505
10 Boruah B D, Ferry D B, Mukherjee A and Misra A 2015 Nanotechnology 26 235703
11 Nie B, Hu J G, Luo L B, Xie C, Zeng L H, Lv P, Li F Z, Jie J S, Feng M, Wu C Y, Yu Y Q and Yu S H 2013 Small 9 2872
12 Tian H J, Liu Q L, Zhou C X, Zhan X J, He X Y, Hu A Q and Guo X 2018 Appl. Phys. Lett. 113 121109
13 Tian H J, Hu A Q, Liu Q L, He X Y and Guo X 2020 Adv. Opt. Mater. 8 1901741
14 Liu Q L, Tian H J, Li J, Hu A Q, He X Y, Sui M L and Guo X 2019 Adv. Opt. Mater. 7 1900455
15 Konstantatos G, Badioli M, Gaudrea L, Osmond J, Bernechea M, Arquer F P G, Gatti F and Koppens F H L 2011 Nat. Nanotechnol. 7 363
16 Adinolfi V and Sargent E H 2017 Nature 542 324
17 Kufer D, Nikitskiy I, Lasanta T and Navickaite G 2015 Adv. Mater. 27 176
18 Wang L, Jin K J, Xing J, Ge C, Lu H B, Zhou W J and Yang G Z 2013 Appl. Opt. 52 3473
19 Ohta H and Hosono H 2004 Mater. Today 7 42
20 Jiang H and Egawa T 2007 Appl. Phys. Lett. 90 7115
21 Tuta T, Yelboga T, Ulker E and Ozbay E 2008 Appl. Phys. Lett. 92 7433
22 Zhang Y, Shena S, Kim H J, Choi S, Ryou J, Dupuis R D and Narayan B 2009 Appl. Phys. Lett. 94 J165
23 Zhou W J, Jin K J, Guo H Z, Ge C, He M and Lu H B 2013 J. Appl. Phys. 4 1
24 Spitzer W G, Miller R C, Kleinman D A and Howarth L E 1962 Phys Rev 126 1710
25 Guo E J, Lu H B, He M, Xing J, Jin K J and Yang G Z 2010 Appl. Opt. 49 2557
26 Zhang M, Zhang H F, Lv K B, Chen W Y, Zhou J R, Shen L and Ruan S P 2012 Opt. Express 20 5936
27 Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
28 Jing F Y, Zhang D Z, Li F, Zhou J R, Sun D M and Ruan S P 2015 J. Alloys Compd. 650 97
29 Gong X, Tong M H, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shie C L, Nilsson B and Heeger A J 2009 Science 325 1665
30 Sablon K A, Sergeev A, Najmaei S and Dubey M 2017 Nanophotonics 6 1263
31 Nikitskiy I, Goossens S, Kufer D, Lasanta T, Navickaite G, Koppens F H L and Konstantatos G 2016 Nat. Commun. 7 11954
32 Sun Z H, Liu Z K, Li J H, Tai G A, Lau S P and Yan F 2012 Adv. Mater. 24 5878
33 Ni Z Y, Ma L L, Du S C, Xu Y, Yuan M, Fang H H, Wang Z, Xu M S, Li D S, Yang J Y, Hu W D, Pi X D and Yang D R 2017 ACS Nano. 11 9854
34 Bessonov A A, Allen M, Liu Y, Malik S, Bottomley J, Rushton A, Medina-Salazar I, Voutilainen M, Kallioinen S, Colli A, Bower C, Andrew P and Ryh\"anen T 2017 ACS Nano 11 5547
35 Tian H J, Liu Q L, Hu A Q, He X Y, Hu Z H and Guo X 2018 Opt. Express 26 5408
36 An X H, Liu F Z, Jung Y J and Kar S 2013 Nano Letters 13 909
37 Wang W H, Du R X, Guo X T, Jiang J, Zhao W W, Ni Z H, Wang X R, You Y M and Ni Z H 2017 Light Sci. Appl. 6 e17113
38 Xu K, Xu C, Xie Y Y, Deng J, Zhu Y X, Guo W L, Xun M, Teo K B K, Chen H D and Sun J 2015 IEEE Trans. Electron Devices 62 2802
[1] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[5] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[6] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[12] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[13] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[14] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[15] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
No Suggested Reading articles found!