CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors |
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢)†, Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春) |
Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China |
|
|
Abstract The defect-related photoconductivity gain and persistent photoconductivity (PPC) observed in Ga2O3 Schottky photodetectors lead to a contradiction between high responsivity and fast recovery speed. In this work, a metal-semiconductor-metal (MSM) Schottky photodetector, a unidirectional Schottky photodetector, and a photoconductor were constructed on Ga2O3 films. The MSM Schottky devices have high gain (> 13) and high responsivity (> 2.5 A/W) at 230-250 nm, as well as slow recovery speed caused by PPC. Interestingly, applying a positive pulse voltage to the reverse-biased Ga2O3/Au Schottky junction can effectively suppress the PPC in the photodetector, while maintaining high gain. The mechanisms of gain and PPC do not strictly follow the interface trap trapping holes or the self-trapped holes models, which is attributed to the correlation with ionized oxygen vacancies in the Schottky junction. The positive pulse voltage modulates the width of the Schottky junction to help quickly neutralize electrons and ionized oxygen vacancies. The realization of suppression PPC functions and the establishment of physical models will facilitate the realization of high responsivity and fast response Schottky devices.
|
Received: 07 July 2021
Revised: 25 August 2021
Accepted manuscript online: 06 October 2021
|
PACS:
|
61.72.jd
|
(Vacancies)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51872043, 51732003, and 51902049), the National Key R&D Program of China (Grant No. 2019YFA0705202), Natural Science Foundation of Jilin Province, China (Grant No. 20200201076JC), the National Basic Research Program of China (Grant No. 2012CB933703), and "111" Project (Grant No. B13013). |
Corresponding Authors:
Jiangang Ma
E-mail: majg@nenu.edu.cn
|
Cite this article:
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春) Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors 2021 Chin. Phys. B 30 126104
|
[1] Pearton S J, Yang J, Cary IV P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301 [2] Chen M, Zhang Z, Zhan R, She J, Deng S, Xu N and Chen J 2021 Applied Surface Science 554 149619 [3] Fan M, Cao L, Xu K and Li X 2021 J. Alloys Compd. 853 157080 [4] Xu J, Zheng W and Huang F 2019 J. Mater. Chem. C 7 8753 [5] Hou X, Zou Y, Ding M, Qin Y, Zhang Z, Ma X, Tan P, Yu S, Zhou X, Zhao X, Xu G, Sun H and Long S 2021 J. Phys. D:Appl. Phys. 54 043001 [6] Tan P, Zhao X, Hou X, Yu Y, Yu S, Ma X, Zhang Z, Ding M, Xu G, Hu Q, Gao N, Sun H, Mu W, Jia Z, Tao X and Long S 2021 Adv. Opt. Mater. 9 2100173 [7] Yadav M K, Mondal A, Shringi S, Sharma S K and Bag A 2020 Semicond. Sci. Technol. 35 085009 [8] Yu Y T, Xiang X Q, Zhou X Z, Zhou K, Xu G W, Zhao X L and Long S B 2021 Chin. Phys. B 30 067302 [9] Zhao Y, Zang J H, Yang X, Chen X X, Chen Y C, Li K Y, Dong L and Shan C X 2021 Chin. Phys. B 30 078504 [10] Deak P, Ho Q D, Seemann F, Aradi B, Lorke M and Frauenheim T 2017 Phys. Rev. B 95 075208 [11] Kyrtsos A, Matsubara M and Bellotti E 2017 Phys. Rev. B 95 245202 [12] Zhang Z, Farzana E, Arehart A R and Ringel S A 2016 Appl. Phys. Lett. 108 052105 [13] Hajnal Z, Miro J, Kiss G, Reti F, Deak P, Herndon R C and Kuperberg J M 1999 J. Appl. Phys. 86 3792 [14] Zacherle T, Schmidt P C and Martin M 2013 Phys. Rev. B 87 235206 [15] Huang S S, Lopez R, Paul S, Neal A T, Mou S, Houng M P and Li J V 2018 Jpn. J. Appl. Phys. 57 091101 [16] Aller H T, Yu X, Wise A, Howell R S, Gellman A J, McGaughey A J H and Malen J A 2019 Nano Lett. 19 8533 [17] Zhang D, Zheng W, Lin R, Li Y and Huang F 2019 Adv. Funct. Mater. 29 1900935 [18] Harada T, Ito S and Tsukazaki A 2019 Sci. Adv. 5 eaax5733 [19] Hao S J, Hetzl M, Schuster F, Danielewicz K, Bergmaier A, Dollinger G, Sai Q L, Xia C T, Hoffmann T, Wiesinger M, Matich S, Aigner W and Stutzmann M 2019 J. Appl. Phys. 125 105701 [20] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725 [21] Zhou H, Cong L, Ma J, Li B, Chen M, Xu H and Liu Y 2019 J. Mater. Chem. C 7 13149) [22] Han Z, Liang H, Huo W, Zhu X, Du X and Mei Z 2020 Adv. Opt. Mater. 8 1901833 [23] Zhou H, Cong L, Ma J, Chen M, Song D, Wang H, Li P, Li B, Xu H and Liu Y 2020 J. Alloys Compd. 847 156536 [24] Ahn J, Ma J, Lee D, Lin Q, Park Y, Lee O, Sim S, Lee K, Yoo G and Heo J 2021 ACS Photonics 8 557 [25] Cui S, Mei Z, Zhang Y, Liang H and Du X 2017 Adv. Opt. Mater. 5 1700454 [26] Jeon S, Ahn S E, Song I, Kim C J, Chung U I, Lee E, Yoo I, Nathan A, Lee S, Robertson J and Kim K 2012 Nat. Mater. 11 301 [27] Hou Q, Wang X, Xiao H, Wang C, Yang C, Yin H, Deng Q, Li J, Wang Z and Hou X 2011 Appl. Phys. Lett. 98 102104 [28] Wang Y, Liao Z, She G, Mu L, Chen D and Shi W 2011 Appl. Phys. Lett. 98 203108 [29] Liu K, Sakurai M, Aono M and Shen D 2015 Adv. Funct. Mater. 25 3157 [30] Hou M, So H, Suria A J, Yalamarthy A S and Senesky D G 2017 IEEE Electron Device Lett. 38 56 [31] Qiao B, Zhang Z, Xie X, Li B, Chen X, Zhao H, Liu K, Liu L and Shen D 2021 J. Mater. Chem. C 9 4039 [32] Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z, Muralidharan R, Rajan S and Nath D N 2017 Appl. Phys. Lett. 110 221107 [33] Chen X, Liu K, Zhang Z, Wang C, Li B, Zhao H, Zhao D and Shen D 2016 ACS Appl. Mater. Interfaces 8 4185 [34] Oshima T, Okuno T and Fujita S 2007 Jpn. J. Appl. Phys. 46 7217 [35] Ghose S, Rahman S, Hong L, Rojas-Ramirez J S, Jin H, Park K, Klie R and Droopad R 2017 J. Appl. Phys. 122 095302 [36] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z and Shan C X 2019 J. Mater. Chem. C 7 2557 [37] Heinemann M D, Berry J, Teeter G, Unold T and Ginley D 2016 Appl. Phys. Lett. 108 022107 [38] Kim J, Sekiya T, Miyokawa N, Watanabe N, Kimoto K, Ide K, Toda Y, Ueda S, Ohashi N, Hiramatsu H, Hosono H and Kamiya T 2017 NPG Asia Mater. 9 e359 [39] Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang X and Shan C 2019 Adv. Funct. Mater. 29 1906040 [40] Li K H, Kang C H, Min J H, Alfaraj N, Liang J W, Braic L, Guo Z, Hedhili M N, Ng T K and Ooi B S 2020 ACS Appl. Mater. Interfaces 12 53932 [41] Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W and Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714 [42] Li L, Chen H, Fang Z, Meng X, Zuo C, Lv M, Tian Y, Fang Y, Xiao Z, Shan C, Xiao Z, Jin Z, Shen G, Shen L and Ding L 2020 Adv. Mater. 32 1907257 [43] Lany S and Zunger A 2005 Phys. Rev. B 72 035215 [44] Janotti A and Van de Walle C G 2005 Appl. Phys. Lett. 87 122102 [45] Ryu B, Noh H K, Choi E A and Chang K J 2010 Appl. Phys. Lett. 97 022108 [46] Xu Y, Chen X, Zhou D, Ren F, Zhou J, Bai S, Lu H, Gu S, Zhang R, Zheng Y and Ye J 2019 IEEE Trans. Electron. Dev. 66 2276 [47] Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S and Liu M 2020 ACS Photonics 7 812 [48] Armstrong A M, Crawford M H, Jayawardena A, Ahyi A and Dhar S 2016 J. Appl. Phys. 119 103102 [49] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G and Tang W H 2014 Appl. Phys. Lett. 105 023507 [50] Sze S M and Ng K K 2007 Physics of Semiconductor Devices, 3rd ed. (Hoboken:Wiley) [51] Oh S, Kim C and Kim J 2018 ACS Photonics 5 1123 [52] Qian L X, Liu H Y, Zhang H F, Wu Z H and Zhang W L 2019 Appl. Phys. Lett. 114 113506 [53] Guo D, Wu Z, Li P, Wang Q, Lei M, Li L and Tang W 2015 RSC Adv. 5 12894 [54] Shen H, Yin Y, Tian K, Baskaran K, Duan L, Zhao X and Tiwari A 2018 J. Alloys Compd. 766 601 [55] Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C, Li L and Tang W 2014 Opt. Mater. Express 4 1067 [56] Ahn S, Ren F, Oh S, Jung Y, Kim J, Mastro M A, Hite J K, Eddy C R and Pearton S J 2016 J. Vac. Sci. Technol. B 34 041207 [57] Fan M, Lu Y, Xu K, Cui Y, Cao L and Li X 2020 Applied Surface Science 509 144867 [58] Oh S, Jung Y, Mastro M A, Hite J K, Eddy Jr C R and Kim J 2015 Opt. Express 23 28300 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|