Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018505    DOI: 10.1088/1674-1056/ac9049
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A field-effect WSe2/Si heterojunction diode

Rui Yu(余睿)1, Zhe Sheng(盛喆)1, Wennan Hu(胡文楠)1, Yue Wang(王越)1, Jianguo Dong(董建国)1, Haoran Sun(孙浩然)1, Zengguang Cheng(程增光)1, and Zengxing Zhang(张增星)1,2,†
1 State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China;
2 National Integrated Circuit Innovation Center, Shanghai 201203, China
Abstract  It is significant to develop a heterogeneous integration technology to promote the application of two-dimensional (2D) materials in silicon roadmap. In this paper, we reported a field-effect WSe2/Si heterojunction diode based on ambipolar 2D WSe2 and silicon on insulator (SOI). Our results indicate that the device exhibits a p-n diode behavior with a rectifying ratio of ~ 300 and an ideality factor of 1.37. As a photodetector, it has optoelectronic properties with a response time of 0.13 ms, responsivity of 0.045 A/W, detectivity of 4.5×1010 Jones and external quantum efficiency (EQE) of 8.9 %. Due to the ambipolar behavior of the WSe2, the rectifying and optoelectronic properties of the heterojunction diode can be modulated by the gate electrical field, enabling various potential applications such as logic optoelectronic devices and neuromorphic optoelectronic devices for in-sensor computing circuits. Thanks to the process based on the mature SOI technique, our field-effect heterojunction diode should have obvious advantages in device isolation and integration.
Keywords:  two-dimensional material      ambipolar semiconductor      field-effect transistor      optoelectronic device  
Received:  04 June 2022      Revised:  24 August 2022      Accepted manuscript online:  08 September 2022
PACS:  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.30.Tv (Field effect devices)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
Fund: Project supported by the Ministry of Science and Technology of China (Grant No. 2018YFE0118300), the National Key Research and Development Program of China (Grant No. 2018YFA0703703), and State Key Laboratory of ASIC & System (Grant No. 2021MS003), and Science and Technology Commission of Shanghai Municipality, China (Grant No. 20501130100).
Corresponding Authors:  Zengxing Zhang     E-mail:  zhangzx@fudan.edu.cn

Cite this article: 

Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星) A field-effect WSe2/Si heterojunction diode 2023 Chin. Phys. B 32 018505

[1] Salahuddin S, Ni K and Datta S 2018 Nat. Electron. 1 442
[2] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Science 320 1308
[3] Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J and Yakobson B I 2010 Nano Lett. 10 3209
[4] Zhao W J, Ghorannevis Z, Chu L Q, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791
[5] Ge C H, Li H L, Zhu X L and Pan A L 2017 Chin. Phys. B 26 034208
[6] Kang S, Lee D, Kim J, Capasso A, Kang H S, Park J W, Lee C H and Lee G H 2020 2D Mater. 7 022003
[7] Wei X, Yan F G, Shen C, Lv Q S and Wang K Y 2017 Chin. Phys. B 26 038504
[8] Wu L M, Wang A W, Shi J, Yan J H, Zhou Z, Bian C, Ma J J, Ma R S, Liu H T and Chen J C 2021 Nat. Nanotech. 16 882
[9] Liu T D, Tong L, Huang X Y and Ye L 2019 Chin. Phys. B 28 017302
[10] Li D, Wang X J, Zhang Q C, Zou L P, Xu X F and Zhang Z X 2015 Adv. Funct. Mater. 25 7360
[11] Li D, Chen M, Zong Q and Zhang Z X 2017 Nano Lett. 17 6353
[12] Zhang Z X and Li D 2017 Acta Phys. Sin. 66 217302 (in Chinese)
[13] Cheng R, Li D, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y and Duan X F 2014 Nano Lett. 14 5590
[14] Chen X, Jiang B, Wang D K, Li G L, Wang H L, Wang H, Wang F, Wang P, Liao L and Wei Z P 2021 Appl. Phys. Lett. 118 041102
[15] Baugher B W, Churchill H O, Yang Y and Jarillo-Herrero P 2014 Nat. Nanotech. 9 262
[16] Pospischil A, Furchi M M and Mueller T 2014 Nat. Nanotech. 9 257
[17] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K and Yao W 2014 Nat. Nanotech. 9 268
[18] Liu D, Qi X Z, Chiu K L, Taniguchi T, Ren X F and Guo G P 2018 Chin. Phys. B 27 087303
[19] Li D, Wang B, Chen M, Zhou J and Zhang Z X 2017 Small 13 1603726
[20] Li D, Chen M, Sun Z, Yu P, Liu Z, Ajayan P M and Zhang Z X 2017 Nat. Nanotech. 12 901
[21] Sun Y L, Lin Y X, Zubair A, Xie D and Palacios T 2021 2D Mater. 8 035034
[22] Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J and Mueller T 2020 Nature 579 62
[23] Anwar M A, Dong S and Wong H 2020 Int. J. Nanotechnol. 17 4
[24] An X G, Liu F Z, Jung Y J and Kar S 2013 Nano Lett. 13 909
[25] John W, Dhyani V, Maity S, Mukherjee S, Ray S K, Kumar V and Das S 2020 Nat. Nanotech. 31 455208
[26] Wang L, Jie J S, Shao Z B, Zhang Q, Zhang X H, Wang Y M, Sun Z and Lee S T 2015 Adv. Funct. Mater. 25 2910
[27] Patel M, Pataniya P M, Patel V, Sumesh C K and Late D J 2020 Sol. Energy 206 974
[28] Patel M, Pataniya P M, Late D J and Sumesh C K 2021 Appl. Surf. Sci. 538 148121
[29] Zhou J S, Xin K Y, Zhao X K, Li D M, Wei Z M and Xia J B 2021 Sci. China Mater. 65 876
[30] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X F 2018 Nature 557 696
[31] Jung Y, Choi M S, Nipane A, Borah A, Kim B, Zangiabadi A, Taniguchi T, Watanabe K, Yoo W J and Hone J 2019 Nat. Electron. 2 187
[32] Sah C T, Noyce R N and Shockley W 1957 Proc. IEEE 45 1228
[33] Pataniya P M, Zankat C K, Tannarana M, Patel A, Narayan S, Solanki G K, Patel K D, Jha P K and Pathak V M 2019 Mater. Res. Bull. 120 110602
[34] Sun M X, Fang Q Y, Xie D, Sun Y L, Qian L, Xu J L, Xiao P, Teng C J, Li W W and Ren T L 2018 Nano Res. 11 3233
[35] Guo T C, Ling C C, Zhang T, Li H, Li X F, Chang X, Zhu L, Zhao L and Xue Q Z 2018 J. Mater. Chem. C 6 5821
[36] Kim K, Larentis S, Fallahazad B, Lee K, Xue J M, Dillen D C, Corbet C M and Tutuc E 2015 ACS Nano 9 4527
[37] Sze S M, Zhao H M, Qian M, Huang Q Z 2002 Semiconductor Devices Physics and Technology (2nd edn.) (Suzhou: Suzhou University Press) p. 278
[1] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[4] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[5] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[6] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[7] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[8] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[9] Impact of incident direction on neutron-induced single-bit and multiple-cell upsets in 14 nm FinFET and 65 nm planar SRAMs
Shao-Hua Yang(杨少华), Zhan-Gang Zhang(张战刚), Zhi-Feng Lei(雷志锋), Yun Huang(黄云), Kai Xi(习凯), Song-Lin Wang(王松林), Tian-Jiao Liang(梁天骄), Teng Tong(童腾), Xiao-Hui Li(李晓辉), Chao Peng(彭超), Fu-Gen Wu(吴福根), and Bin Li(李斌). Chin. Phys. B, 2022, 31(12): 126103.
[10] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[11] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[12] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[13] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[14] Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance
Hui-Fang Xu(许会芳), Wen Sun(孙雯), and Na Wang(王娜). Chin. Phys. B, 2021, 30(7): 078503.
[15] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
No Suggested Reading articles found!