INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A field-effect WSe2/Si heterojunction diode |
Rui Yu(余睿)1, Zhe Sheng(盛喆)1, Wennan Hu(胡文楠)1, Yue Wang(王越)1, Jianguo Dong(董建国)1, Haoran Sun(孙浩然)1, Zengguang Cheng(程增光)1, and Zengxing Zhang(张增星)1,2,† |
1 State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; 2 National Integrated Circuit Innovation Center, Shanghai 201203, China |
|
|
Abstract It is significant to develop a heterogeneous integration technology to promote the application of two-dimensional (2D) materials in silicon roadmap. In this paper, we reported a field-effect WSe2/Si heterojunction diode based on ambipolar 2D WSe2 and silicon on insulator (SOI). Our results indicate that the device exhibits a p-n diode behavior with a rectifying ratio of ~ 300 and an ideality factor of 1.37. As a photodetector, it has optoelectronic properties with a response time of 0.13 ms, responsivity of 0.045 A/W, detectivity of 4.5×1010 Jones and external quantum efficiency (EQE) of 8.9 %. Due to the ambipolar behavior of the WSe2, the rectifying and optoelectronic properties of the heterojunction diode can be modulated by the gate electrical field, enabling various potential applications such as logic optoelectronic devices and neuromorphic optoelectronic devices for in-sensor computing circuits. Thanks to the process based on the mature SOI technique, our field-effect heterojunction diode should have obvious advantages in device isolation and integration.
|
Received: 04 June 2022
Revised: 24 August 2022
Accepted manuscript online: 08 September 2022
|
PACS:
|
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.30.Tv
|
(Field effect devices)
|
|
81.16.-c
|
(Methods of micro- and nanofabrication and processing)
|
|
Fund: Project supported by the Ministry of Science and Technology of China (Grant No. 2018YFE0118300), the National Key Research and Development Program of China (Grant No. 2018YFA0703703), and State Key Laboratory of ASIC & System (Grant No. 2021MS003), and Science and Technology Commission of Shanghai Municipality, China (Grant No. 20501130100). |
Corresponding Authors:
Zengxing Zhang
E-mail: zhangzx@fudan.edu.cn
|
Cite this article:
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星) A field-effect WSe2/Si heterojunction diode 2023 Chin. Phys. B 32 018505
|
[1] Salahuddin S, Ni K and Datta S 2018 Nat. Electron. 1 442 [2] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Science 320 1308 [3] Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J and Yakobson B I 2010 Nano Lett. 10 3209 [4] Zhao W J, Ghorannevis Z, Chu L Q, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791 [5] Ge C H, Li H L, Zhu X L and Pan A L 2017 Chin. Phys. B 26 034208 [6] Kang S, Lee D, Kim J, Capasso A, Kang H S, Park J W, Lee C H and Lee G H 2020 2D Mater. 7 022003 [7] Wei X, Yan F G, Shen C, Lv Q S and Wang K Y 2017 Chin. Phys. B 26 038504 [8] Wu L M, Wang A W, Shi J, Yan J H, Zhou Z, Bian C, Ma J J, Ma R S, Liu H T and Chen J C 2021 Nat. Nanotech. 16 882 [9] Liu T D, Tong L, Huang X Y and Ye L 2019 Chin. Phys. B 28 017302 [10] Li D, Wang X J, Zhang Q C, Zou L P, Xu X F and Zhang Z X 2015 Adv. Funct. Mater. 25 7360 [11] Li D, Chen M, Zong Q and Zhang Z X 2017 Nano Lett. 17 6353 [12] Zhang Z X and Li D 2017 Acta Phys. Sin. 66 217302 (in Chinese) [13] Cheng R, Li D, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y and Duan X F 2014 Nano Lett. 14 5590 [14] Chen X, Jiang B, Wang D K, Li G L, Wang H L, Wang H, Wang F, Wang P, Liao L and Wei Z P 2021 Appl. Phys. Lett. 118 041102 [15] Baugher B W, Churchill H O, Yang Y and Jarillo-Herrero P 2014 Nat. Nanotech. 9 262 [16] Pospischil A, Furchi M M and Mueller T 2014 Nat. Nanotech. 9 257 [17] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K and Yao W 2014 Nat. Nanotech. 9 268 [18] Liu D, Qi X Z, Chiu K L, Taniguchi T, Ren X F and Guo G P 2018 Chin. Phys. B 27 087303 [19] Li D, Wang B, Chen M, Zhou J and Zhang Z X 2017 Small 13 1603726 [20] Li D, Chen M, Sun Z, Yu P, Liu Z, Ajayan P M and Zhang Z X 2017 Nat. Nanotech. 12 901 [21] Sun Y L, Lin Y X, Zubair A, Xie D and Palacios T 2021 2D Mater. 8 035034 [22] Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J and Mueller T 2020 Nature 579 62 [23] Anwar M A, Dong S and Wong H 2020 Int. J. Nanotechnol. 17 4 [24] An X G, Liu F Z, Jung Y J and Kar S 2013 Nano Lett. 13 909 [25] John W, Dhyani V, Maity S, Mukherjee S, Ray S K, Kumar V and Das S 2020 Nat. Nanotech. 31 455208 [26] Wang L, Jie J S, Shao Z B, Zhang Q, Zhang X H, Wang Y M, Sun Z and Lee S T 2015 Adv. Funct. Mater. 25 2910 [27] Patel M, Pataniya P M, Patel V, Sumesh C K and Late D J 2020 Sol. Energy 206 974 [28] Patel M, Pataniya P M, Late D J and Sumesh C K 2021 Appl. Surf. Sci. 538 148121 [29] Zhou J S, Xin K Y, Zhao X K, Li D M, Wei Z M and Xia J B 2021 Sci. China Mater. 65 876 [30] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X F 2018 Nature 557 696 [31] Jung Y, Choi M S, Nipane A, Borah A, Kim B, Zangiabadi A, Taniguchi T, Watanabe K, Yoo W J and Hone J 2019 Nat. Electron. 2 187 [32] Sah C T, Noyce R N and Shockley W 1957 Proc. IEEE 45 1228 [33] Pataniya P M, Zankat C K, Tannarana M, Patel A, Narayan S, Solanki G K, Patel K D, Jha P K and Pathak V M 2019 Mater. Res. Bull. 120 110602 [34] Sun M X, Fang Q Y, Xie D, Sun Y L, Qian L, Xu J L, Xiao P, Teng C J, Li W W and Ren T L 2018 Nano Res. 11 3233 [35] Guo T C, Ling C C, Zhang T, Li H, Li X F, Chang X, Zhu L, Zhao L and Xue Q Z 2018 J. Mater. Chem. C 6 5821 [36] Kim K, Larentis S, Fallahazad B, Lee K, Xue J M, Dillen D C, Corbet C M and Tutuc E 2015 ACS Nano 9 4527 [37] Sze S M, Zhao H M, Qian M, Huang Q Z 2002 Semiconductor Devices Physics and Technology (2nd edn.) (Suzhou: Suzhou University Press) p. 278 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|