CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Assessing the effect of hydrogen on the electronic properties of 4H-SiC |
Yuanchao Huang(黄渊超)1,2, Rong Wang(王蓉)1,2,†, Yiqiang Zhang(张懿强)3, Deren Yang(杨德仁)1,2, and Xiaodong Pi(皮孝东)1,2,‡ |
1 State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; 2 Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China; 3 School of Materials Science and Engineering & College of Chemistry, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract As a common impurity in 4H silicon carbide (4H-SiC), hydrogen (H) may play a role in tuning the electronic properties of 4H-SiC. In this work, we systemically explore the effect of H on the electronic properties of both n-type and p-type 4H-SiC. The passivation of H on intrinsic defects such as carbon vacancies (VC) and silicon vacancies (VSi) in 4H-SiC is also evaluated. We find that interstitial H at the bonding center of the Si-C bond (Hibc) and interstitial H at the tetrahedral center of Si (HiSi-te) dominate the defect configurations of H in p-type and n-type 4H-SiC, respectively. In n-type 4H-SiC, the compensation of HiSi-te is found to pin the Fermi energy and hinder the increase of the electron concentration for highly N-doped 4H-SiC. The compensation of Hibc is negligible compared to that of VC on the p-type doping of Al-doped 4H-SiC. We further examine whether H can passivate VC and improve the carrier lifetime in 4H-SiC. It turns out that nonequilibrium passivation of VC by H is effective to eliminate the defect states of VC, which enhances the carrier lifetime of moderately doped 4H-SiC. Regarding the quantum-qubit applications of 4H-SiC, we find that H can readily passivate VSi during the creation of VSi centers. Thermal annealing is needed to decompose the resulting VSi-nH (n=1-4) complexes and promote the uniformity of the photoluminescence of VSi arrays in 4H-SiC. The current work may inspire the impurity engineering of H in 4H-SiC.
|
Received: 24 September 2021
Revised: 09 December 2021
Accepted manuscript online:
|
PACS:
|
61.82.Fk
|
(Semiconductors)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2018YFB2200101),the National Natural Science Foundation of China (Grant Nos.91964107 and U20A20209),the"Pioneer "and" Leading Goose"Research and Development Program of Zhejiang Province,China (Grant No.2022C01021),and partial support from the National Natural Science Foundation of China for Innovative Research Groups (Grant No.61721005).The National Supercomputer Center in Tianjin is acknowledged for computational support. |
Corresponding Authors:
Rong Wang,E-mail:rong_wang@zju.edu.cn;Xiaodong Pi,E-mail:xdpi@zju.edu.cn
E-mail: rong_wang@zju.edu.cn;xdpi@zju.edu.cn
|
About author: 2021-12-11 |
Cite this article:
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东) Assessing the effect of hydrogen on the electronic properties of 4H-SiC 2022 Chin. Phys. B 31 056108
|
[1] Kimoto T and Cooper J A 2014 Fundamentals of silicon carbide technology: growth, characterization, devices and applications (John Wiley & Sons) pp. 1-6 [2] Wang F F and Zhang Z 2016 CPSS Trans. Power Electron. Appl. 1 13 [3] Roccaforte F, Fiorenza P, Greco G, Nigro R L, Giannazzo F, Iucolano F and Saggio M 2018 Microelectron. Eng. 187-188 66 [4] Syväjärvi M, Ciechonski R R, Yazdi G R and Yakimova R 2005 Cryst. Growth 275 e1103 [5] Li Q, Polyakov A Y, Skowronski M, Fanton M A, Cavalero R C, Ray R G and Weiland B E 2005 Appl. Phys. Lett. 86 202102 [6] Peng Y, Xu X, Hu X, Jiang K, Song S, Gao Y and Xu H 2010 J. Appl. Phys. 107 093519 [7] Fanton M A, Li Q, Polyakov A Y, Skowronski M, Cavalero R and Ray R 2006 J. Cryst. Growth 287 339 [8] Larkin D J, Sridhara S G, Devaty R P and Choyke W J 1995 J. Electron. Mater. 24 289 [9] Larkin D J 1997 Phys. Status Solidi 202 305 [10] Nordell N, Nishino S, Yang J W, Jacob C and Pirouz P 1994 Appl. Phys. Lett. 64 1647 [11] Chowdhury I, Chandrasekhar M V S, Klein P B, Caldwell J D and Sudarshan T 2011 J. Cryst. Growth 316 60 [12] Owman F, Hallin C, MÅrtensson P and Janzen E 1996 J. Cryst. Growth 167 391 [13] Wang S, Dhar S, Wang S R, Ahyi A C, Franceschetti A, Williams J R and Pantelides S T 2007 Phys. Rev. Lett. 98 026101 [14] Senzaki J, Kojima K, Harada S, Kosugi R, Suzuki S, Suzuki T and Fukuda K 2002 IEEE Electron Dev. Lett. 23 13 [15] Devynck F, Alkauskas A, Broqvist P and Pasquarello A 2011 Phys. Rev. B 84 235320 [16] Roberson M A and Estreicher S K 1991 Phys. Rev. B 44 10578 [17] Kaukonen M, Fall C J and Lento J 2003 Appl. Phys. Lett. 83 923 [18] Aradi B, Deák P, Son N T, Janzén E, Choyke W J and Devaty R P 2001 Appl. Phys. Lett. 79 2746 [19] Choyke W J and Patrick L 1974 Phys. Rev. B 9 3214 [20] Gali A, Deák P, Son N T and Janzén E 2003 Appl. Phys. Lett. 83 1385 [21] Theys B, Gendron F, Porte C, Bringuier E and Dolin C 1997 J. Appl. Phys. 82 6346 [22] Gendron F, Porter L M, Porte C and Bringuier E 1995 Appl. Phys. Lett. 67 1253 [23] Aradi B, Gali A, Deák P, Son N T and Janzén E 2001 Physica B 308-310 722 [24] Deák P, Aradi B and Gali A 2001 J. Phys.: Condens. Mater 13 9019 [25] Koshka Y, Mazzola M S and Draper W A 2002 Appl. Phys. Lett. 80 4762 [26] Son N T, Trinh X T, Lovlie L S, Svensson B G, Kawahara K, Suda J and Janzén E 2012 Phys. Rev. Lett. 109 187603 [27] Capan I, Brodar T, Pastuović Z, Siegele R, Ohshima T, Sato S I and Demmouche K 2018 J. Appl. Phys. 123 161597 [28] Umeda T, Ishitsuka Y, Isoya J, Son N T, Janzén E, Morishita N and Gali A 2005 Phys. Rev. B 71 193202 [29] Cai X, Yang Y, Deng H X and Wei S H 2021 Phys. Rev. Mater. 5 064604 [30] Lee B, Han S and Kim Y S 2010 Phys. Rev. B 81 075432 [31] Coutinho J, Torres V J, Demmouche K and öberg S 2017 Phys. Rev. B 96 174105 [32] Okuda T, Kimoto T and Suda J 2013 Appl. Phys. Express 6 121301 [33] Murakami K, Tanai S, Okuda T, Suda J, Kimoto T and Umeda T 2016 Mater. Sci. Forum 858 318 [34] Aradi B, Gali A, Deák P, Lowther J E, Son N T, Janzén E and Choyke W J 2001 Phys. Rev. B 63 245202 [35] Gali A, Aradi B, Deák P, Choyke W J and Son N T 2000 Phys. Rev. Lett. 84 4926 [36] Szûcs B, Gali A, Hajnal Z, Deák P and Van de Walle C G 2003 Phys. Rev. B 68 085202 [37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [39] Grimme S 2006 J. Comput. Chem. 27 1787 [40] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [41] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [42] Wei S H 2004 Comput. Mater. Sci. 30 337 [43] Wang R, Tong X, Xu J, Zhang S, Zheng P, Chen F X and Tan W 2019 Phys. Rev. Appl. 11 054021 [44] Scalise E, Marzegalli A, Montalenti F and Miglio L 2019 Phys. Rev. Appl. 12 021002 [45] Van de Walle C G and Neugebauer J 2006 Annu. Rev. Mater. Res. 36 179 [46] Tong X, Wang R, Zhang S, Xu J, Zheng P and Chen F X 2019 IEEE Trans. Electron. Dev. 66 5091 [47] Wang R, Xu J, Zhang S, Cheng Z, Zhang L, Zheng P and Tan W 2019 Appl. Phys. Lett. 115 143504 [48] Ohno T, Yamaguchi H, Kuroda S, Kojima K, Suzuki T and Arai K 2004 J. Cryst. Growth 271 1 [49] Myers-Ward R L, VanMil B L, Stahlbush R E, Katz S L, McCrate J M, Kitt S A and Gaskill D K 2009 Mater. Sci. Forum 615-617 105 [50] Luo X, Zhang K, Song X, Fang J, Yang F and Zhang B 2020 J. Semicond. 41 102801 [51] VanBrunt E, Cheng L, O'Loughlin M J, Richmond J, Pala V, Palmour J W and Scozzie C 2015 Mater. Sci. Forum 821-823 847 [52] Kadavelugu A and Bhattacharya S 2014 IEEE Applied Power Electronics Conference and Exposition-APEC, 2014. IEEE, 1494 [53] Das M K, Zhang Q J, Callanan R, Capell C, Clayton J, Donofrio M and Sumakeris J J 2009 Mater. Sci. Forum 600 1183 [54] Ayedh H M, Nipoti R, Hallén A and Svensson B G 2015 Appl. Phys. Lett. 107 252102 [55] Hiyoshi T and Kimoto T 2009 Appl. Phys. Express 2 041101 [56] Zippelius B, Suda J and Kimoto T 2012 J. Appl. Phys. 111 033515 [57] Canino M, Fedeli P, Albonetti C and Nipoti R 2020 J. Microsc. 280 229 [58] Koehl W F, Buckley B B, Heremans F J, Calusine G and Awschalom D D 2011 Nature 479 84 [59] Falk A L, Buckley B B, Calusine G, Koehl W F, Dobrovitski V V, Politi A and Awschalom D D 2013 Nat. Commun. 4 1 [60] Gordon L, Janotti A and Van de Walle C G 2015 Phys. Rev. B 92 045208 [61] Niethammer M, Widmann M, Rendler T, Morioka N, Chen Y C, Stöhr R and Wrachtrup J 2019 Nat. Commun. 10 1 [62] Davidsson J, Ivády V, Armiento R, Ohshima T, Son N T, Gali A and Abrikosov I A 2019 Appl. Phys. Lett. 114 112107 [63] Wimbauer T, Meyer B K, Hofstaetter A, Scharmann A and Overhof H 1997 Phys. Rev. B 56 7384 [64] Pavunny S P, Yeats A L, Banks H B, Bielejec E, Myers-Ward R L, DeJarld M T and Carter S G 2021 Sci. Rep. 11 1 [65] Wang J, Zhou Y, Zhang X, Liu F, Li Y, Li K and Gao W 2017 Phys. Rev. Appl. 7 064021 [66] Bathen M E, Galeckas A, Coutinho J and Vines L 2020 J. Appl. Phys. 127 085701 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|