Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 086102    DOI: 10.1088/1674-1056/ac5c34
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator

Meng Peng(彭猛)1, Jun-Bo Yang(杨俊波)1,†, Hao Chen(陈浩)2, Bo-Yuan Li(李博源)3, Xu-Lei Ge(葛绪雷)3, Xiao-Hu Yang(杨晓虎)1, Guo-Bo Zhang(张国博)1, and Yan-Yun Ma(马燕云)4,‡
1 Department of Physics, National University of Defense Technology, Changsha 410072, China;
2 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China;
3 Key Laboratory for Laser Plasmas(MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
4 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
Abstract  Space radiation with inherently broadband spectral flux poses a huge danger to astronauts and electronics on aircraft, but it is hard to simulate such feature with conventional radiation sources. Using a tabletop laser-plasma accelerator, we can reproduce exponential energy particle beams as similar as possible to these in space radiation. We used such an electron beam to study the electron radiation effects on the surface structure and performance of two-dimensional material (FePS3). Energetic electron beam led to bulk sample cleavage and damage between areas of uneven thickness. For the FePS3 sheet sample, electron radiation transformed it from crystalline state to amorphous state, causing the sample surface to rough. The full widths at the half maximum of characteristic Raman peaks became larger, and the intensities of characteristic Raman peaks became weak or even disappeared dramatically under electron radiation. This trend became more obvious for thinner samples, and this phenomenon was attributed to the cleavage of P-P and P-S bonds, destabilizing the bipyramid structure of [P2S6]4- unit. The results are of great significance for testing the maximum allowable radiation dose for the two-dimensional material, implying that FePS3 cannot withstand such energetic electron radiation without an essential shield.
Keywords:  space radiation      laser-plasma interaction      two-dimensional material      Raman spectroscopy  
Received:  04 November 2021      Revised:  12 February 2022      Accepted manuscript online:  10 March 2022
PACS:  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  72.90.+y (Other topics in electronic transport in condensed matter)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975308), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25050200), and Science Challenge Project (Grant No. TZ2018001).
Corresponding Authors:  Jun-Bo Yang, Yan-Yun Ma     E-mail:  yangjunbo@nudt.edu.cn;yanyunma@126.com

Cite this article: 

Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云) Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator 2022 Chin. Phys. B 31 086102

[1] Novikov L S, Mileev V N, Voronina E N, Galanina L I and Sinolits V V 2009 J. Surf. Invest.:X-ray, Synchrotron & Neutron Techn. 3 199
[2] Hidding B, Karger O, Königstein T, et al. 2017 Sci. Rep. 7 42354
[3] Mauk B H and Fox N J 2010 J. Geophys. Res. 115 A12220
[4] Horne R B, Thorne R M, Shprits Y Y, et al. 2005 Nature 437 227
[5] Thorne R, Glauert S, Menietti J, et al. 2008 Nat. Phys. 4 301
[6] Bolton S J, Janssen M, Thorne R, et al. 2002 Nature 415 987
[7] Tao X, Thorne R M, Horne R B, Ni B, Menietti J D, Shprits Y Y and Gurnett D A 2011 J. Geophys. Res. 116 A01206
[8] Königstein T, Karger O, Pretzler G, Rosenzweig J B and Hidding B 2012 J. Plasma Phys. 78 383
[9] KÖnigstein T, Karger O, Pretzler G, et al. 2012 J. Plasma Phys. 78 383)
[10] Strickland D and Mourou G 1985 Opt. Commun. 56 219
[11] Malka V, Fritzler S, Lefebvre E, et al. 2002 Science 298 1596
[12] Hidding B, Konigstein T, Willi O, et al. 2011 Nucl. Instrum. Meth. A 636 31
[13] Alexandrou K, Masurkar A, Edrees H, Wishart J F, Hao Y F, Nicholas P, Hone J and Kymissis I 2016 Appl. Phys. Lett. 109 153108
[14] Vogl T, Sripathy K, Sharma A, et al. 2019 Nat. Commun. 10 1202
[15] Li G C and Li S T 2019 Acta Phys. Sin. 68 239401 (in Chinese)
[16] Liu J and Zhang H B 2019 Acta Phys. Sin. 68 059401 (in Chinese)
[17] Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science. 306 666
[18] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[19] Han M X, Ji Z Y, Shang L W, et al. 2011 Chin. Phys. B 20 86102
[20] Koziol Z, Gawlik G and Jagielski J. 2019 Chin. Phys. B 28 096101
[21] Huang X, Zeng Z and Zhang H 2013 Chem. Soc. Rev. 42 1934
[22] Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl. Acad. Sci. USA 102 10451
[23] Chhowalla M, Shin H S, Eda G, et al. 2013 Nat. Chem. 5 263
[24] Kou L, Chen C and Smith S C 2015 J. Phys. Chem. Lett. 6 2794
[25] Abbas A N, Liu B, Chen L, et al. 2015 ACS Nano 9 5618
[26] Lu J, Jing W, Carvalho A, et al. 2015 ACS Nano 9 10411
[27] Koester S J 2012 IEEE Nuclear and Space Radiation Effects Conference, July 16-20, 2012, Miami, America, p. 5
[28] Joy P A and Vasudevan S 1992 Phys. Rev. B. 46 5425
[29] Le Flem G, Brec R, Ouvard G, et al. 1982 J. Phys. Chem. Solids. 43 455
[30] Rule K C, McIntyre G J, Kennedy S J, et al. 2007 Phys. Rev. B. 76 134402
[31] Du K Z, Wang X Z, Liu Y, et al. 2016 ACS Nano 10 1738
[32] Cheng Z, Shifa T A, Wang F, et al. 2018 Adv. Mater. 30 1707433
[33] Xu H, Wang S, Ouyang J, et al. 2019 Sci. Rep. 9 15219
[34] Kuo C T, Neumann M, Balamurugan K, et al. 2016 Sci. Rep. 6 20904
[35] Susner M A, Chyasnavichyus M, McGuire M A, et al. 2017 Adv. Mater. 29 1602852
[36] Long G, Zhang T, Cai X, et al. 2017 ACS Nano 11 11330
[37] Brec R, Schleich D M, Ouvrard G, et al. 1979 Inorg. Chem. 18 1814
[38] Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater. 3 031009
[39] Jenjeti R N, Kumar R, Austeria M P, et al. 2018 Sci. Rep. 8 8586
[40] Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
[41] Rosenzweig J B, Breizman B, Katsouleas T and Su J J 1991 Phys. Rev. A 44 R6189
[42] Li S, Li G Y, Ain Q, Hur M S, Ting A C, Kulagin V V, Kamperidis C and Hafz N A M 2019 Sci. Adv. 5 eaav7940
[43] Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Meth. A 506 250
[44] Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270
[45] Krasheninnikov A V and Nordlund K 2010 J. Appl. Phys. 107 071301
[46] Stuchbery A E and Bezakova E 1999 Phys. Rev. Lett. 82 3637
[47] Meldrum A, Zinkle S J, Boatner L A, et al. 1998 Nature 395 56
[48] Rubia TDdl, Averback R S, Benedek R, et al. 1987 Phys. Rev. Lett. 59 1930
[49] Trautmann C, Klaumünzer S and Trinkaus H 2000 Phys. Rev. Lett. 85 3648
[50] Samela J and Nordlund K 2007 Phys. Rev. B 76 125434
[51] Meyer J C, Eder F, Kurasch S, et al. 2012 Phys. Rev. Lett. 108 196102
[52] Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[6] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[7] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[10] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[11] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[12] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[13] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[14] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[15] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
No Suggested Reading articles found!