CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator |
Meng Peng(彭猛)1, Jun-Bo Yang(杨俊波)1,†, Hao Chen(陈浩)2, Bo-Yuan Li(李博源)3, Xu-Lei Ge(葛绪雷)3, Xiao-Hu Yang(杨晓虎)1, Guo-Bo Zhang(张国博)1, and Yan-Yun Ma(马燕云)4,‡ |
1 Department of Physics, National University of Defense Technology, Changsha 410072, China; 2 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China; 3 Key Laboratory for Laser Plasmas(MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 4 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract Space radiation with inherently broadband spectral flux poses a huge danger to astronauts and electronics on aircraft, but it is hard to simulate such feature with conventional radiation sources. Using a tabletop laser-plasma accelerator, we can reproduce exponential energy particle beams as similar as possible to these in space radiation. We used such an electron beam to study the electron radiation effects on the surface structure and performance of two-dimensional material (FePS3). Energetic electron beam led to bulk sample cleavage and damage between areas of uneven thickness. For the FePS3 sheet sample, electron radiation transformed it from crystalline state to amorphous state, causing the sample surface to rough. The full widths at the half maximum of characteristic Raman peaks became larger, and the intensities of characteristic Raman peaks became weak or even disappeared dramatically under electron radiation. This trend became more obvious for thinner samples, and this phenomenon was attributed to the cleavage of P-P and P-S bonds, destabilizing the bipyramid structure of [P2S6]4- unit. The results are of great significance for testing the maximum allowable radiation dose for the two-dimensional material, implying that FePS3 cannot withstand such energetic electron radiation without an essential shield.
|
Received: 04 November 2021
Revised: 12 February 2022
Accepted manuscript online: 10 March 2022
|
PACS:
|
61.48.De
|
(Structure of carbon nanotubes, boron nanotubes, and other related systems)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
72.90.+y
|
(Other topics in electronic transport in condensed matter)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975308), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25050200), and Science Challenge Project (Grant No. TZ2018001). |
Corresponding Authors:
Jun-Bo Yang, Yan-Yun Ma
E-mail: yangjunbo@nudt.edu.cn;yanyunma@126.com
|
Cite this article:
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云) Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator 2022 Chin. Phys. B 31 086102
|
[1] Novikov L S, Mileev V N, Voronina E N, Galanina L I and Sinolits V V 2009 J. Surf. Invest.:X-ray, Synchrotron & Neutron Techn. 3 199 [2] Hidding B, Karger O, Königstein T, et al. 2017 Sci. Rep. 7 42354 [3] Mauk B H and Fox N J 2010 J. Geophys. Res. 115 A12220 [4] Horne R B, Thorne R M, Shprits Y Y, et al. 2005 Nature 437 227 [5] Thorne R, Glauert S, Menietti J, et al. 2008 Nat. Phys. 4 301 [6] Bolton S J, Janssen M, Thorne R, et al. 2002 Nature 415 987 [7] Tao X, Thorne R M, Horne R B, Ni B, Menietti J D, Shprits Y Y and Gurnett D A 2011 J. Geophys. Res. 116 A01206 [8] Königstein T, Karger O, Pretzler G, Rosenzweig J B and Hidding B 2012 J. Plasma Phys. 78 383 [9] KÖnigstein T, Karger O, Pretzler G, et al. 2012 J. Plasma Phys. 78 383) [10] Strickland D and Mourou G 1985 Opt. Commun. 56 219 [11] Malka V, Fritzler S, Lefebvre E, et al. 2002 Science 298 1596 [12] Hidding B, Konigstein T, Willi O, et al. 2011 Nucl. Instrum. Meth. A 636 31 [13] Alexandrou K, Masurkar A, Edrees H, Wishart J F, Hao Y F, Nicholas P, Hone J and Kymissis I 2016 Appl. Phys. Lett. 109 153108 [14] Vogl T, Sripathy K, Sharma A, et al. 2019 Nat. Commun. 10 1202 [15] Li G C and Li S T 2019 Acta Phys. Sin. 68 239401 (in Chinese) [16] Liu J and Zhang H B 2019 Acta Phys. Sin. 68 059401 (in Chinese) [17] Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science. 306 666 [18] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [19] Han M X, Ji Z Y, Shang L W, et al. 2011 Chin. Phys. B 20 86102 [20] Koziol Z, Gawlik G and Jagielski J. 2019 Chin. Phys. B 28 096101 [21] Huang X, Zeng Z and Zhang H 2013 Chem. Soc. Rev. 42 1934 [22] Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl. Acad. Sci. USA 102 10451 [23] Chhowalla M, Shin H S, Eda G, et al. 2013 Nat. Chem. 5 263 [24] Kou L, Chen C and Smith S C 2015 J. Phys. Chem. Lett. 6 2794 [25] Abbas A N, Liu B, Chen L, et al. 2015 ACS Nano 9 5618 [26] Lu J, Jing W, Carvalho A, et al. 2015 ACS Nano 9 10411 [27] Koester S J 2012 IEEE Nuclear and Space Radiation Effects Conference, July 16-20, 2012, Miami, America, p. 5 [28] Joy P A and Vasudevan S 1992 Phys. Rev. B. 46 5425 [29] Le Flem G, Brec R, Ouvard G, et al. 1982 J. Phys. Chem. Solids. 43 455 [30] Rule K C, McIntyre G J, Kennedy S J, et al. 2007 Phys. Rev. B. 76 134402 [31] Du K Z, Wang X Z, Liu Y, et al. 2016 ACS Nano 10 1738 [32] Cheng Z, Shifa T A, Wang F, et al. 2018 Adv. Mater. 30 1707433 [33] Xu H, Wang S, Ouyang J, et al. 2019 Sci. Rep. 9 15219 [34] Kuo C T, Neumann M, Balamurugan K, et al. 2016 Sci. Rep. 6 20904 [35] Susner M A, Chyasnavichyus M, McGuire M A, et al. 2017 Adv. Mater. 29 1602852 [36] Long G, Zhang T, Cai X, et al. 2017 ACS Nano 11 11330 [37] Brec R, Schleich D M, Ouvrard G, et al. 1979 Inorg. Chem. 18 1814 [38] Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater. 3 031009 [39] Jenjeti R N, Kumar R, Austeria M P, et al. 2018 Sci. Rep. 8 8586 [40] Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267 [41] Rosenzweig J B, Breizman B, Katsouleas T and Su J J 1991 Phys. Rev. A 44 R6189 [42] Li S, Li G Y, Ain Q, Hur M S, Ting A C, Kulagin V V, Kamperidis C and Hafz N A M 2019 Sci. Adv. 5 eaav7940 [43] Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Meth. A 506 250 [44] Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270 [45] Krasheninnikov A V and Nordlund K 2010 J. Appl. Phys. 107 071301 [46] Stuchbery A E and Bezakova E 1999 Phys. Rev. Lett. 82 3637 [47] Meldrum A, Zinkle S J, Boatner L A, et al. 1998 Nature 395 56 [48] Rubia TDdl, Averback R S, Benedek R, et al. 1987 Phys. Rev. Lett. 59 1930 [49] Trautmann C, Klaumünzer S and Trinkaus H 2000 Phys. Rev. Lett. 85 3648 [50] Samela J and Nordlund K 2007 Phys. Rev. B 76 125434 [51] Meyer J C, Eder F, Kurasch S, et al. 2012 Phys. Rev. Lett. 108 196102 [52] Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|