Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127301    DOI: 10.1088/1674-1056/ac0525
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy

Xiang-Peng Zhou(周祥鹏)1,3, Hai-Bing Qiu(邱海兵)2,3, Wen-Xian Yang(杨文献)3,†, Shu-Long Lu(陆书龙)3, Xue Zhang(张雪)2,3, Shan Jin(金山)3, Xue-Fei Li(李雪飞)2,3, Li-Feng Bian(边历峰)1,3,‡, and Hua Qin(秦华)3
1 School of Microelectronics, University of Science and Technology of China, Hefei 230026, China;
2 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China;
3 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  AlN/GaN resonant tunneling diodes (RTDs) were grown separately on freestanding GaN (FS-GaN) substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy (PA-MBE). Room temperature negative differential resistance (NDR) was obtained under forward bias for the RTDs grown on FS-GaN substrates, with the peak current densities (Jp) of 175-700 kA/cm2 and peak-to-valley current ratios (PVCRs) of 1.01-1.21. Two resonant peaks were also observed for some RTDs at room temperature. The effects of two types of substrates on epitaxy quality and device performance of GaN-based RTDs were firstly investigated systematically, showing that lower dislocation densities, flatter surface morphology, and steeper heterogeneous interfaces were the key factors to achieving NDR for RTDs.
Keywords:  resonant tunneling diodes      negative differential resistance      molecular beam epitaxy      III-nitrides  
Received:  11 March 2021      Revised:  27 April 2021      Accepted manuscript online:  26 May 2021
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFB0406600), the National Natural Science Foundation of China (Grant Nos. 61875224, 61804163, and 61827823), Key Laboratory of Microelectronic Devices and Integration Technology, Chinese Academy of Sciences (Grant No. Y9TAQ21), Key Laboratory of Nano-devices and Applications, Chinese Academy of Sciences (Grant No. Y8AAQ21001), and Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology (Grant No. DH202011).
Corresponding Authors:  Wen-Xian Yang, Li-Feng Bian     E-mail:  wxyang2014@sinano.ac.cn;lfbian2006@sinano.ac.cn

Cite this article: 

Xiang-Peng Zhou(周祥鹏), Hai-Bing Qiu(邱海兵), Wen-Xian Yang(杨文献), Shu-Long Lu(陆书龙), Xue Zhang(张雪), Shan Jin(金山), Xue-Fei Li(李雪飞), Li-Feng Bian(边历峰), and Hua Qin(秦华) Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy 2021 Chin. Phys. B 30 127301

[1] Davies A G, Burnett A D, Fan W, Linfield E H and Cunningham J E 2008 Mater. Today 11 18
[2] Tonouchi M 2007 Nat. Photon. 1 97
[3] Hosako I, Sekine N, Patrashin M, Saito S, Fukunaga K, Kasai Y, Baron P, Seta T, Mendrok J, Ochiai S and Yasuda H 2007 Proc. IEEE 95 1611
[4] Kanaya H, Sogabe R, Maekawa T, Suzuki S and Asada M 2014 J. Infrared, Millimeter, and Terahertz Waves 35 425
[5] Tang W X, Hao R H, Chen F, Yu G H and Zhang B S 2018 Acta Phys. Sin. 67 198501 (in Chinese)
[6] Guo H Y, Lv Y J, Gu G D, Dun S B, Fang Y L, Zhang Z R, Tan X, Song X B, Zhou X Y and Feng Z H 2015 Chin. Phys. Lett. 32 118501
[7] Egorkin V I, Il'ichev E A, Zhuravlev M N, Burzin S B and Shmelev S S 2014 Semiconductors 48 1747
[8] Chen H, Yang L a and Hao Y 2014 J. Appl. Phys. 116 074510
[9] Li D, Tang L, Edmunds C, Shao J, Gardner G, Manfra M J and Malis O 2012 Appl. Phys. Lett. 100 252105
[10] Boucherit M, Soltani A, Monroy E, Rousseau M, Deresmes D, Berthe M, Durand C and De Jaeger J C 2011 Appl. Phys. Lett. 99 182109
[11] Suzuki S, Asada M, Teranishi A, Sugiyama H and Yokoyama H 2010 Appl. Phys. Lett. 97 242102
[12] Bayram C, Vashaei Z and Razeghi M 2010 Appl. Phys. Lett. 97 181109
[13] Leconte S, Golka S, Pozzovivo G, Strasser G, Remmele T, Albrecht M and Monroy E 2008 Phys. Status Solidi C 5 431
[14] Hermann M, Monroy E, Helman A, Baur B, Albrecht M, Daudin B, Ambacher O, Stutzmann M and Eickhoff M 2004 Phys. Status Solidi C 1 2210
[15] Belyaev A E, Makarovsky O, Walker D J, Eaves L, Foxon C T, Novikov S V, Zhao L X, Dykeman R I, Danylyuk S V, Vitusevich S A, Kappers M J, Barnard J S and Humphreys C J 2004 Physica E 21 752
[16] Foxon C T, Novikov S V, Belyaev A E, Zhao L X, Makarovsky O, Walker D J, Eaves L, Dykeman R I, Danylyuk S V, Vitusevich S A, Kappers M J, Barnard J S and Humphreys C J 2003 Phys. Status Solidi C 0 2389
[17] Kikuchi A, Bannai R, Kishino K, Lee C-M and Chyi J-I 2002 Appl. Phys. Lett. 81 1729
[18] Growden T A, Storm D F, Zhang W, Brown E R, Meyer D J, Fakhimi P and Berger P R 2016 Appl. Phys. Lett. 109 083504
[19] Bayram C, Vashaei Z and Razeghi M 2010 Appl. Phys. Lett. 96 042103
[20] Golka S, Pflügl C, Schrenk W, Strasser G, Skierbiszewski C, Siekacz M, Grzegory I and Porowski S 2006 Appl. Phys. Lett. 88 172106
[21] Kikuchi A, Bannai R and Kishino K 2001 Phys. Status Solidi A 188 187
[22] Encomendero J, Yan R, Verma A, Islam S M, Protasenko V, Rouvimov S, Fay P, Jena D and Xing H G 2018 Appl. Phys. Lett. 112 103101
[23] Cornuelle E M, Growden T A, Storm D F, Brown E R, Zhang W, Downey B P, Gokhale V, Ruppalt L B, Champlain J G, Peri P, McCartney M R, Smith D J, Meyer D J and Berger P R 2020 AIP Adv. 10 055307
[24] Wang D, Su J, Chen Z, Wang T, Yang L, Sheng B, Lin S, Rong X, Wang P, Shi X, Tan W, Zhang J, Ge W, Shen B, Liu Y and Wang X 2019 Adv. Electron. Mater. 5 1800651
[25] Wang D, Chen Z Y, Wang T, Yang L Y, Sheng B W, Liu H P, Su J, Wang P, Rong X, Cheng J Y, Shi X Y, Tan W, Guo S P, Zhang J, Ge W K, Shen B and Wang X Q 2019 Appl. Phys. Lett. 114 073503
[26] Wang D, Chen Z, Su J, Wang T, Zhang B, Rong X, Wang P, Tan W, Guo S, Zhang J, Shen B and Wang X 2020 Adv. Funct. Mater. 31 2007216
[27] Growden T A, Cornuelle E M, Storm D F, Zhang W, Brown E R, Whitaker L M, Daulton J W, Molnar R, Meyer D J and Berger P R 2019 Appl. Phys. Lett. 114 203503
[28] Cho Y, Encomendero J, Ho S T, Xing H G and Jena D 2020 Appl. Phys. Lett. 117 143501
[29] Zhang H, Xue J, Fu Y, Li L, Sun Z, Yao J, Liu F, Zhang K, Ma X, Zhang J and Hao Y 2021 J. Appl. Phys. 129 014502
[30] Lin S, Wang D, Tong Y, Shen B and Wang X 2020 J. Phys. D:Appl. Phys. 53 253002
[31] Matejova J S, Horak L, Minarik P, Holy V, Grzanka E, Domagala J and Leszczynski M 2021 J. Appl. Crystallography 54 62
[32] Ali A H, Shuhaimi A, Hassan Z and Yusof Y 2013 International Conference on X-Ray and Related Technique in Research and Industry (ICXRI 2012), July 3-5, 2012, Pulau Pinang, Malaysia, p. 22
[33] Kraus A, Hammadi S, Hisek J, Buss R, Joenen H, Bremers H, Rossow U, Sakalauskas E, Goldhahn R and Hangleiter A 2011 J. Cryst. Growth 323 72
[34] Grier A, Valavanis A, Edmunds C, Shao J, Cooper J D, Gardner G, Manfra M J, Malis O, Indjin D, Ikonic Z and Harrison P 2015 J. Appl. Phys. 118 224308
[35] Surender S, Pradeep S, Prabakaran K, Sumithra S M, Singh S and Baskar K 2018 J. Alloys Compd. 734 48
[36] Yang L A, He H, Mao W and Hao Y 2011 Appl. Phys. Lett. 99 153501
[37] Wang X, Chen L L, Cao Y R, Yang Q S, Zhu P M, Yang G F, Wang F X, Yan D W and Gu X F 2018 Acta Phys. Sin. 67 177202 (in Chinese)
[38] Chen Z, Zhang Y and Zhao H 2020 Opt. Express 28 26651
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[4] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[5] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[6] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[7] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[8] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[9] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[10] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[11] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[12] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[13] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[14] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[15] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
No Suggested Reading articles found!