Abstract The anisotropic magnetoresistances (AMRs) in single crystalline Co(6 nm)/SrTiO3(001) heterostructures from 5 K to 300 K with the current direction setting along either Co[100] or Co[110] are investigated in this work. The anomalous (normal) AMR is observed below (above) 100 K. With the current along Co[100] direction, the AMR shows negative longitudinal and positive transverse magnetoresistances at T< 100 K, while the AMR is inverse with the current along Co[110]. Meanwhile, the amplitude ratio between Co[110] and Co[100] is observed to be as large as 29 at 100 K. A crystal symmetry-adapted model of AMR demonstrates that interplay between the non-crystalline component and crossed AMR component results in the anomalous AMR. Our results may reveal more intriguing magneto-transport behaviors of film on SrTiO3 or other perovskite oxides.
(Magnetic properties of thin films, surfaces, and interfaces)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174163 and 91963201), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT-16R35), and the 111 Project, China (Grant No. B20063).
Shuang-Long Yang(杨双龙), De-Zheng Yang(杨德政), Yu Miao(缪宇), Cun-Xu Gao(高存绪), and De-Sheng Xue(薛德胜) Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001) heterostructures 2021 Chin. Phys. B 30 127302
[1] Thomson W 1857 Proc. R. Soc. 546 [2] McGuire T and Potter R 1975 IEEE Trans. Magn.11 1018 [3] Li J, Jin E, Son H, Tan A, Cao W N, Hwang C and Qiu Z Q 2012 Rev. Sci. Instrum.83 033906 [4] Campbell I A, Fert A and Jaoul O 1970 J. Magn. Magn. Mater.3 S95 [5] Smit J 1951 Physica17 612 [6] Berger L 1963 J. Appl. Phys.34 1360 [7] Baibich M N, Broto J M, Fert A, Van Dau F N, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett.61 2472 [8] Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2005 Nat. Mater.3 868 [9] Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E and Bauer G E W 2013 Phys. Rev. B87 144411 [10] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprägs S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B and Saitoh E 2013 Phys. Rev. Lett.110 206601 [11] Miao B F, Huang S Y, Qu D and Chien C L 2014 Phys. Rev. Lett.112 236601 [12] Kim J, Sheng P, Takahashi S, Mitani S and Hayashi M 2016 Phys. Rev. Lett.116 097201 [13] Avci C O, Garello K, Ghosh A, Gabureac M, Alvarado S F and Gambardella P 2015 Nat. Phys.11 570 [14] Vélez S, Golovach V N, Bedoya-Pinto A, Isasa M, Sagasta E, Abadia M, Rogero C, Hueso L E, Bergeret F S and Casanova F 2016 Phys. Rev. Lett.116 016603 [15] Kobs A, Heße S, Kreuzpaintner W, Winkler G, Lott D, Weinberger P, Schreyer A and Oepen H P 2011 Phys. Rev. Lett.106 217207 [16] Kobs A, Heße S, Oepen H and Weinberger P 2012 Philos. Mag.92 2835 [17] Kobs A, Frauen A and Oepen H P 2014 Phys. Rev. B90 016401 [18] Nakayama H, Kanno Y, An H, Tashiro T, Haku S, Nomura A and Ando K 2016 Phys. Rev. Lett.117 116602 [19] Zhou L, Song H, Liu K et al. 2018 Sci. Adv.4 eaao3318 [20] Narayanapillai K, Go G, Ramaswamy R, Gopinadhan K, Go D, Lee H W, Venkatesan T, Lee K J and Yang H 2017 Phys. Rev. B96 064401 [21] Annadi A, Huang Z, Gopinadhan K, Wang X R, Srivastava A, Liu Z Q, Ma H H, Sarkar T P, Venkatesan T and Ariando 2013 Phys. Rev. B87 201102 [22] Ma H J H, Zhou J, Yang M, Liu Y, Zeng S W, Zhou W X, Zhang L C, Venkatesan T, Feng Y P and Ariando 2017 Phys. Rev. B95 155314 [23] Ben Shalom M, Tai C W, Lereah Y, Sachs M, Levy E, Rakhmilevitch D, Palevski A and Dagan Y 2009 Phys. Rev. B80 140403 [24] Flekser E, Ben Shalom M, Kim M, Bell C, Hikita Y, Hwang H Y and Dagan Y 2012 Phys. Rev. B86 121104 [25] Yang H, Zhang B, Zhang X, Yan X, Cai W, Zhao Y, Sun J, Wang K L, Zhu D and Zhao W 2019 Phys. Rev. Appl.12 034004 [26] Rödel T C, Fortuna F, Sengupta S, Frantzeskakis E, Févre P L, Bertran F, Mercey B, Matzen S, Agnus G, Maroutian T, Lecoeur P and Santander-Syro A F 2016 Adv. Mater.28 1976 [27] D C Vaz P Noël A J B G F Y B G S S M W F T L M V A and A Sander N M 2019 Nat. Mater.18 1976 [28] Nikolaev K R, Krivorotov I N, Dahlberg E D, Vas'ko V A, Urazhdin S, Loloee R and Pratt W P 2003 Appl. Phys. Lett.82 4534 [29] Tsunoda M, Komasaki Y, Kokado S, Isogami S, Chen C C and Takahashi M 2009 Appl. Phys. Express2 083001 [30] Xiao X, Liang J H, Chen B L, Li J X, Ma D H, Ding Z and Wu Y Z 2015 J. Appl. Phys.118 043908 [31] Xiao X, Li J X, Ding Z and Wu Y Z 2015 J. Appl. Phys.118 203905 [32] Hupfauer T, Matos-Abiague A, Gmitra M, Schiller F, Loher J, Bougeard D, Back C H, Fabian J and Weiss D 2015 Nat. Commun.6 [33] Zeng F L, Zhou C, Jia M W, Shi D and Wu Y Z 2019 J. Magn. Magn. Mater.499 166204 [34] Zeng F L, Ren Z Y, Li Y, Zeng J Y, Jia M W, Miao J, Hoffmann A, Zhang W, Wu Y Z and Yuan Z 2020 Phys. Rev. Lett.125 097201 [35] Rushforth A W, Výborný K, King C S, Edmonds K W, Campion R P, Foxon C T, Wunderlich J, Irvine A C, Vaek P, Novák V, Olejník K, Sinova J, Jungwirth T and Gallagher B L 2007 Phys. Rev. Lett.99 147207 [36] Rushforth A W, Výborný K, King C S, Edmonds K W, Campion R P, Foxon C T, Wunderlich J, Irvine A C, Novák V and Olejník K 2009 J. Magn. Magn. Mater.321 1001 [37] Howells B, Wang M, Edmonds K W, Wadley P, Campion R P, Rushforth A W, Foxon C T and Gallagher B L 2013 Appl. Phys. Lett.102 052407 [38] Ranieri E D, Rushforth A W, Výborný K, Rana U, Ahmad E, Campion R P, Foxon C T, Gallagher B L, Irvine A C, Wunderlich J and Jungwirth T 2008 New J. Appl. Phys.10 065003 [39] Yang F J, Sakuraba Y, Kokado S, Kota Y, Sakuma A and Takanashi K 2012 Phys. Rev. B86 020409 [40] Kokado S, Tsunoda M, Harigaya K and Sakuma A 2012 J. Phys. Soc. Jpn.81 024705 [41] Yabuhara O, Nukaga Y, Ohtake M, Kirino F and Futamoto M 2010 J. Magn. Soc. Jpn.34 78 [42] Kittel C 1996 Introduction to Solid State Physics (Wiley) [43] Lee A J, Brangham J T, Cheng Y, White S P, Ruane W T, Esser B D, McComb D W, Hammel P C and Yang F Y 2017 Nat. Commun.8 234 [44] Raquet B, Viret M, Sondergard E, Cespedes O and Mamy R 2002 Phys. Rev. B66 024433 [45] Freitas P, Gomes A, McGuire T and Plaskett T 1990 J. Magn. Magn. Mater.83 113 [46] Gil W, Görlitz D, Horisberger M and Kötzler J 2005 Phys. Rev. B72 134401 [47] Epshtein E M, Krikunov A I and F Y 2003 J. Magn. Magn. Mater.258-259 80 [48] Lima S C and Baibich M N 2016 J. Appl. Phys.119 033902 [49] Birss R R et al. 1964 Symmetry and Magnetism, Vol. 863 (North-Holland Amsterdam) [50] Döring W 1938 Ann. Phys.424 259 [51] Cao W N, Li J, Chen G, Zhu J, Hu C R and Wu Y Z 2011 Appl. Phys. Lett.98 262506 [52] Miao Y, Chen X, Yang S, Zheng K, Lian Z, Wang Y, Wang P, Gao C, Yang D Z and Xue D S 2020 J. Magn. Magn. Mater.512 167013 [53] Qeemat G, He W, Li Y, Sun R, Li N, Yang X, Li Y, Gong Z Z, Xie Z, Zhang X, Cheng Z H 2018 Chin. Phys. B27 097504 [54] Syed S A, He W, Tang J, Zhang S, Hu B, Ye J, Gul Q, Zhang X and Cheng Z H 2016 Chin. Phys. B25 097501 [55] Cao W N, Li J, Chen G, Zhu J, Hu C R and Wu Y Z 2011 Appl. Phys. Lett.98 1413
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.